Industry & Alumni

2017/2018 Industrial & Systems Engineering Industry-Sponsored Student Capstone Projects

Boeing

Chemical Bath Life Forecast

Download project poster

Sponsor:
Project Name:
Chemical Bath Life Forecast
Students:
Martin Affandy
Aaron Bitz-Richards
Margerie Celestra
Caleb Peek
Yoel Teckle
Fan Xu
Faculty Adviser:
Patty Buchanan, Lecturer, Industrial & Systems Engineering
About the Project:

Chemical baths are used to clean titanium parts coming from the etching process. Chemical process tanks have a finite cleaning capacity which necessitates periodic draining & recharging with new chemical to achieve processing requirements. Current forecasting tools are based on historical usage rates and are not dynamically responsive to production increases, considering defined chemical parameters. Current QA chemistry monitoring is not predictive of bath life resulting in unplanned tank refill, increased cost, as well as schedule impact (both operations & maintenance). The student team was tasked with developing a system to track the number of parts processed through each specific tank on a weekly basis to provide a more robust forecasting of chemical solution bath life correlated to, or directly determined by, production rates.

A group of students

Boeing

Tie Rod Structure Design Project

Download project poster

Sponsor:
Project Name:
Tie Rod Structure Design Project
Students:
Nick Christoforou, mechanical engineering
Jake Owin Ell, industrial & systems engineering
Jessy Ha, mechanical engineering
Madelyn Lew, mechanical engineering
Rungpatch Nethnapat, industrial & systems engineering
Gregory Peterson, industrial & systems engineering
Jasdip Singh, mechanical engineering
Minh-Thu Tran, mechanical engineering
Faculty Adviser:
Ashis Banerjee, Assistant Professor, Industrial & Systems Engineering
Patty Buchanan, Full Time Lecturer, Industrial & Systems Engineering
Corie Cobb, Associate Professor, Mechanical Engineering
About the Project:

The team worked to explore new design options for tie-rods that can be used in the majority of Boeing airplane locations and reduce the cost of the airplane. They conducted a design analysis of their new concepts and used 3D printing to prototype and test their designs. They also completed a business case that compares the total production cost of their recommended design versus the existing baseline Boeing designs.

A group of students

Boeing

Tooling Condition Monitoring

Download project poster

Sponsor:
Project Name:
Tooling Condition Monitoring
Students:
William Chen
Charles LeCuyer
Vuong Ngo
Austin Park
Hailey Wyman
Faculty Adviser:
Patty Buchanan, Lecturer, Industrial & Systems Engineering
About the Project:

Tools are built and inspected prior to first time use and never inspected again. Boeing currently uses pullout punches in order to create holes of the right diameter to join ducts together. These pullout punches are placed within a duct and then pulled through a pilot hole in the duct which will then expand the hole to the same diameter as the punch. This in turn, causes contact wear on the punch and over time starts to affect the critical dimension of the punch. When the wear gets too significant, the pullouts created by the punch will no longer be within tolerance, which causes a significant amount of rework downstream in order to get the ducts mated properly. Currently no system is in place to keep track of the wear on these tools. The student team worked to develop a system for the area operators to check tools for wear outside the usable engineering tolerances, monitor tool use environmental and performance conditions, and predict the remaining life of tools.

A group of students

Boeing

X-Ray Inspection, Tube Fixturing for Batch Processing

Download project poster

Sponsor:
Project Name:
X-Ray Inspection, Tube Fixturing for Batch Processing
Students:
Levi Bisson
Yubin Kim
Xiaolu Li
Jullio Tchouta
Jessica Yeh
Faculty Adviser:
Patty Buchanan, Lecturer, Industrial & Systems Engineering
About the Project:

Tubes used in airplane manufacturing must be inspected. Currently, 55% of process time is spent on the setup for inspection. The team worked to design fixturing for multi-piece processing of tubes for x-ray inspection imaging. Challenges included a work field limited by equipment, keeping parts stationary while the x-ray inspection image is captured, and capturing images without obstruction.

A group of students

Crowley Maritime

Tug Boat Dispatch Support Tool

Download project poster

Sponsor:
Project Name:
Tug Boat Dispatch Support Tool
Students:
Elizabeth Georg, industrial & systems engineering
Logan Jungkuntz, industrial & systems engineering
Kathleen Karlson, industrial & systems engineering
Maxwell Laroche, industrial & systems engineering
John Macmillan, industrial & systems engineering
Molly O‘Brien, industrial & systems engineering
Faculty Adviser:
Patty Buchanan, Full Time Lecturer, Industrial & Systems Engineering
About the Project:

Crowley Maritime uses centralized dispatchers to facilitate tug boat work in the Los Angeles/Long Beach, San Francisco/Oakland and Puget Sound harbors. The role of these dispatchers is to coordinate matches between tugs and incoming vessels and to resolve scheduling conflicts that occur when multiple vessels arrive and require more tugs than are available at that time. In these cases, dispatchers have the ability to hire competitors’ tugs in order to complete the job on thier behalf. This is known as subbing out work. This project focused on resolving these scheduling conflicts in the most efficient way possible by developing a tool to assist in the decision making capabilities of the dispatchers, using their decision making guidelines.

A group of students

Eastside Baby Corner

Streamlining the Inventory Receiving and Storage/Retrieval Process

Download project poster

Project Name:
Streamlining the Inventory Receiving and Storage/Retrieval Process
Students:
Dalton deDianous
Sofia Dolce
Emma Harrison
Camden Hess
Madison Johnson
Saivikas Reddy Chittepu
Faculty Adviser:
Patty Buchanan, Lecturer, Industrial & Systems Engineering
About the Project:

Eastside Baby Corner (EBC) provides families with newborns a strong start in life by providing the necessities that each family needs in order to care for their children. EBC collects everything from diapers and car seats to clothes and toys. The student team worked in the warehouse to analyze the receiving and sorting process to develop procedures and best practices to reduce time and handling and used lean practices and methodologies to streamline current processes. They also developed a standard work and visual communication board to help with incoming and outgoing material.

A group of students

Genie

First in First out Schedule for Fabrication Shop

Download project poster

Sponsor:
Project Name:
First in First out Schedule for Fabrication Shop
Students:
Nicholas Carwin
Deborah Huh
Chanakarn Karnchanavetchakul
Hyunwoo Kim
Evan Kirkpatrick
Tham Panichtrakul
Kenneth Wibisono
Faculty Adviser:
Patty Buchanan, Lecturer, Industrial & Systems Engineering
About the Project:

Genie currently uses an Access database to track parts and part materials throughout the facility. The database fulfilled many of Genie’s initial needs in providing a central location where data could be monitored and stored. Since 1997, many problems have arisen in the database that have led to slower production and a decrease in quality of information available. As Genie continued to improve by producing more parts and collecting more data, the database struggled to keep up the speed it once had. As problems arose, the database was tweaked and added onto in order to fix the short-term issue, however, it failed to address the long-term issues the current form presents, such as slow speed resulting in duplicate entry logs. The student team was tasked with improving the usability and speed of the Access database, as well as providing a wireframe which can eventually be linked with SQL programming, in order to provide an enhanced user Interface.

Genie

Genie Roundabout Production Line Footprint Optimization

Download project poster

Sponsor:
Project Name:
Genie Roundabout Production Line Footprint Optimization
Students:
David Imanuel, industrial & systems engineering
Matthew Lin, industrial & systems engineering
Gavin McPherson, industrial & systems engineering
Dennis Muljadi, industrial & systems engineering
Connor Wong, industrial & systems engineering
Faculty Adviser:
Patty Buchanan, Full Time Lecturer, Industrial & Systems Engineering
About the Project:

Genie is constantly working towards improving its facilities by optimizing material flow and consolidating floor space. Currently, building 6 is in the process of moving its assembly lines within the building to improve material flow and optimize floorspace. GR (Genie Runabout) production line was recently moved to its interim location to help facilitate other line moves. To align with the final future state of the production facility, the GR line will need to move again with a reduced footprint. The student team was tasked with analyzing the current state of the GR production line (assembly and weld) and subsequently identifying areas of improvement, including method, machine, manpower or material (4M) related. The team developed a future state layout with the reduced footprint (target reduction ~40%) and validated the changes through simulations.

A group of students

Hexcel

Ergonomic Risk Reduction for Hand Layup of Composites

Download project poster

Sponsor:
Project Name:
Ergonomic Risk Reduction for Hand Layup of Composites
Students:
Parker Cole, industrial & systems engineering
Roman Fomin,industrial & systems engineering
Trenton Lam, industrial & systems engineering
Adrian Steeler Magallanes, industrial & systems engineering
David Setiawan Tjahjadi, mechanical engineering
Marverick Tjeng, mechanical engineering
Faculty Adviser:
Patty Buchanan, Full Time Lecturer, Industrial & Systems Engineering
Pete Johnson, Professor, Environmental and Occupational Health Sciences, Adjunct Professor, Industrial & Systems Engineering
About the Project:

While automation of composite laminates is increasing across the aerospace industry, there remains a large sector of composite parts that require hand lamination of prepreg materials. This may be due to complexity of the part, low build rates, or continued build of legacy work. The force and dexterity required to sweep fabric into defined tool features takes its toll on the human body, often causing wrist, elbow, and shoulder discomfort. The student team set out to develop the next step in sweeping technology, with a goal to reduce or eliminate ergonomic exposures while not impeding the ability to manually sweep materials into place. Students developed concepts for sweep designs to alleviate high risk activities, tested and analyzed sweep design concepts, and determined how to accurately detect muscle strain based on the required work.

A group of students

McKinstry

Unlocking Data in the Built Environment

Download project poster

Sponsor:
Project Name:
Unlocking Data in the Built Environment
Students:
Ibrahem Adem
Ben LaRoche
Aman Michael
Claire Overby
Tianyi Wang
Faculty Adviser:
Ashis Banerjee, Assistant Professor, Mechanical Engineering
Patty Buchanan, Lecturer, Industrial & Systems Engineering
About the Project:

McKinstry has a desire to better utilize data in the built environment to effect behavior. The student team was tasked with capturing, assessing, and analyzing large amounts of building data to identify trends and deliver recommendations on what occupants and operators should be doing differently to positively impact resource consumption in the built environment.

MOD Pizza

Labor and Deployment Model

Download project poster

Sponsor:
Project Name:
Labor and Deployment Model
Students:
Brendan Bristow, industrial & systems engineering
Jeffrey Roetcisoender, industrial & systems engineering
Soravit Rojanasaksothorn, industrial & systems engineering
Prabhjot Singh, industrial & systems engineering
Griffin Thurlby, industrial & systems engineering
Ryan Tsuji, industrial & systems engineering
Kritten Vibhagool, industrial & systems engineering
Faculty Adviser:
Patty Buchanan, Full Time Lecturer, Industrial & Systems Engineering
About the Project:

MOD Pizza is one of the fastest growing chain restaurants with over 250 locations in the US and United Kingdom and over 5000 employees. With growth, they have had to develop more sophisticated programs and processes that are scalable to business needs, with a goal to have the right people in the right place at the right time to deliver the MOD experience to all customers. The student team worked to develop a validated working labor and deployment model that MOD Pizza can implement into labor scheduling software, to be used at all MOD Pizza locations and all store formats.

A group of students

MOD Pizza

Reach-in versus Walk-in Refrigeration Assessment

Download project poster

Sponsor:
Project Name:
Reach-in versus Walk-in Refrigeration Assessment
Students:
Mikeala Bourree, industrial & systems engineering
Kelly Hoang, industrial & systems engineering
Alexander Mario, industrial & systems engineering
Christine Na, industrial & systems engineering
Lance Phillips, industrial & systems engineering
Josh Quachindustrial & systems engineering
Faculty Adviser:
Patty Buchanan, Full Time Lecturer, Industrial & Systems Engineering
About the Project:

MOD Pizza is one of the fastest growing chain restaurants with over 250 locations in the US and United Kingdom and over 5000 employees. With growth, they have had to develop more sophisticated programs and processes that are scalable to business needs. Much of the current store designs are driven by the placement of walk-in refrigerator/freezer units, which due to size, limits ability to design the optimal store. The student team worked to deliver a recommendation for refrigerated storage and capacity needs for MOD Pizza locations, and considered the type of equipment needed and delivery frequency of product. The project resulted in a validated business case and recommendation for moving from walk-in refrigeration/freezers to reach-in refrigeration/freezers for all future store locations. The team also developed a tool to determine the number of refrigeration units needed depending on store size and frequency of food deliveries.

A group of students

PACCAR

Driver Alertness Monitoring System

Download project poster

Sponsor:
Project Name:
Driver Alertness Monitoring System
Students:
Faisal Almubarak
Joshua Emilio
Vanja Glisic
Bailey Good
Madalyn Li
David Prendez
Faculty Adviser:
Patty Buchanan, Lecturer, Industrial & Systems Engineering
About the Project:

PACCAR is interested in monitoring and improving driver alertness. An effective system must detect and warn the driver when an incidence of driver distraction or driver loss of attention occurs while driving. The student team worked to identify a camera that will allow eye tracking to detect for driver distraction, identified the ideal location for camera installation and determined the best method of alert to notify the driver when they are distracted.

PACCAR

Part Sales Statistical Control

Download project poster

Sponsor:
Project Name:
Part Sales Statistical Control
Students:
Patricia Ambrus
Olivia Chicoine
Jae Yong Lee
Stephanie Palmer
William Zhou
Faculty Adviser:
Youngjun Choe, Assistant Professor, Industrial & Systems Engineering
About the Project:

PACCAR seeks to be pro-active in warranty cost reduction, and wants to track parts sales and determine if a cause for out of control variation will lead to warranty claims for a part. The student team worked to build control charts to indicate if there an unusual increase or decrease in a part’s orders over time. Their R Shiny platform allows PACAR to quickly identify, over time, out of control variation in engine and aftertreatment parts sales.

Seattle Children’s Hospital

Seattle Children’s Downtown TechBar Staffing Models

Download project poster

Project Name:
Seattle Children’s Downtown TechBar Staffing Models
Students:
Edward Cho
Robert Crittenden
Helene Hawes
Austen Lane
Adrian Pyoych
Abigail VonFeldt
Faculty Adviser:
Patty Buchanan, Lecturer, Industrial & Systems Engineering
About the Project:

Seattle Children’s Hospital is working to develop IT talent recruiting and career pathway infrastructure to support thier "TechBar" which will service SCH employees and potential community members of the downtown area. This programmatic effort will draw diverse talent from under-served communities to provide candidates with employment and career opportunities potentially leading to positions beyond the Children's TechBar. To support these efforts the student team was tasked with creating IT/business process designs that provide for an "eConcierge" service for the TechBar customers. Students developed standard procedures and performance criteria for a successful staffing model for a unified customer experience for IT support and coffee services, with the intent to keep cost low and quality high. The model considered various customer arrival rates and helped determine when staffing IT specialist support is necessary.

Seattle City Light

Food Service Electrification

Download project PowerPoint

Project Name:
Food Service Electrification
Students:
Cole Burge
Jacob Fink
Joanna Garcia
Nahom Ghirmay
Ivan Iturriaga
Matthew Kim
Ladat Pattaraarayakul
Robert Pedersen
Ziange Wang
Faculty Adviser:
Patty Buchanan, Lecturer, Industrial & Systems Engineering
Joyce Cooper, Professor, Mechanical Engineering
About the Project:

The City of Seattle has goals to reduce greenhouse gas emissions. As part of this initiative, Seattle City Light is investigating the potential for all-electric renewable energy powered food trucks for use on Seattle streets that have all-electric appliances and no need for propane or gas. In addition to reducing greenhouse gases, improving the viability and operation of food trucks from an environmental perspective addresses issues related to equity. The student team was tasked with demonstrating how to layout, design and build a food truck kitchen using all-electric appliances and renewable energy that satisfies the typical needs of the majority of food trucks used in the Seattle area. They also worked on mapping out the steps to retrofit an existing food truck to all electric appliances, taking into account cost considerations of the retrofit. Finally, the team worked to layout an electric food truck plaza.

TE Connectivity

TE AMT Harrisburg Resource Forecasting and Scheduling

Download project poster

Sponsor:
Project Name:
TE AMT Harrisburg Resource Forecasting and Scheduling
Students:
Daniel Bollinger
Calvin Crooks
Brooke Dieker
Casey Germino
Mason Gionet
Thanika Painruttanasukho
Ben Stemer
Faculty Adviser:
Patty Buchanan, Lecturer, Industrial & Systems Engineering
About the Project:

The TE Connectivity Automation Manufacturing Technology Group in Harrisburg, PA, wants to improve their resource forecasting and scheduling system for its engineering, shop and contract manufacturing resources. The student team was tasked with building a user-friendly resource planning and scheduling system that demonstrates the ability to schedule organizational resources, assess plan status and costs, and provides high level and detailed reporting.

TE Connectivity

Automation Manufacturing Technology Harrisburg Scheduling System

Download project poster

Project Name:
Automation Manufacturing Technology Harrisburg Scheduling System
Students:
Dillon Gibbs, industrial & systems engineering
Reid Gilbertson, industrial & systems engineering
Randy Hemion, industrial & systems engineering
Junil Kim, industrial & systems engineering
Jessica Kuskanto Putri, industrial & systems engineering
Faculty Adviser:
Patty Buchanan, Full Time Lecturer, Industrial & Systems Engineering
About the Project:

The TE Connectivity Automation Manufacturing Technology Group located in Harrisburg, PA requires a scheduling system to be developed for its engineering, shop and contract manufacturing resources. The current system is outdated and given the Group’s projected growth it is critical that a new system be established. The current system utilizes spreadsheets and legacy databases to schedule and track materials, costs and resources. The student team set out to understand the business needs of the group and the current methods, and design a feasible, user-friendly scheduling system to be developed and implemented. This system has the ability to schedule materials and organizational resources, track costs, and provide high level and detailed reporting.

 
A group of students

TE Connectivity

Idea Propagation Across Industry

Download project poster

Sponsor:
Project Name:
Idea Propagation Across Industry
Students:
Michael Kozlowski, industrial & systems engineering
RP McCoy, industrial & systems engineering
West O’Brien, industrial & systems engineering
Brandon Pittaway, industrial & systems engineering
Jared Smith, industrial & systems engineering
John Stewart, industrial & systems engineering
Faculty Adviser:
Patty Buchanan, Full Time Lecturer, Industrial & Systems Engineering
About the Project:

TE Connectivity is an electronics and sensors manufacturer that spans across 12 different industries. The student team set out to ideate, design, and implement a system for TE Connectivity to share operational best practices throughout all 90+ plant locations. The system was required to capture data on various plant needs and strengths using a survey-type format, contain a searchable database for accessibility and sharing, and recommended specific practices based on each plant’s data and automatically send an email with this digest of information.

A group of students

The City of Bellevue, in collaboration with Livable City Year

Automatic Vehicle Locator for Transportation: Streets / Signals

Download project poster

Sponsor:
Project Name:
Automatic Vehicle Locator for Transportation: Streets / Signals
Students:
Mohammed Arab
Kevin Castro-Siguenza
Pradipta Nurahmat
Nikita Sharma
Gina So
Aryton Tediarjo
Faculty Adviser:
Patty Buchanan, Lecturer, Industrial & Systems Engineering
About the Project:

The City of Bellevue aims to help city transportation staff improve efficiencies related to clearing roads during snow and ice events, and is planning to deploy a commercial-off-the-shelf (COTS) telematics system for the winter weather response fleet (plows, sand and salt spreaders, and de-icing trucks). The COTS telematics system is envisioned to provide data on vehicle location, plow position, material spread rate, and time.

Currently, the City of Bellevue does not have a sophisticated system for covering deicing and snow plowing routes. Their current system was created a few decades ago and there is no proof that the system still works today. The current system needs to be optimized to help City of Bellevue efficiency rates in regards to their deicing and snow plowing procedures. The student team worked to develop a dynamic optimization model or platform that will help the City of Bellevue Transportation Department reduce costs and resources for snow and ice response efforts.

A group of students

UW Medical Center Ambulatory Care

Clinic Resource Optimization

Download project poster

Project Name:
Clinic Resource Optimization
Students:
Nicholas Anderson, industrial & systems engineering
Kyle Briggs, industrial & systems engineering
Chanel Ngo, industrial & systems engineering
Denny Nguyen, industrial & systems engineering
Anushka Wadhawan, industrial & systems engineering
Faculty Adviser:
Patty Buchanan, Full Time Lecturer, Industrial & Systems Engineering
About the Project:

Healthcare is a complex and ever evolving industry. One could argue healthcare has one of if not the most opportunity in terms of standardization, reducing variation and optimizing of resources. UW Medical Center is interested in optimization of the complex processes, systems, or organizations found with the operations of the clinic enterprise. The student team set out to look at the three main resources, space, physicians and staff, and identify how best to optimize these variables to eliminate waste of time, money, materials, person-hours, machine time, energy and other resources that do not generate value. They developed a tool to improve the quality and productivity of these finite resources ultimately leading to a better experience for patients, staff and physicians, better use of resources and the most financially viable scenario going forward.

A group of students

UW Housing and Food Services

Operationalizing Mobile Ordering

Download project poster

Project Name:
Operationalizing Mobile Ordering
Students:
Lauren Feldmann, industrial & systems engineering
Dustin Wang, industrial & systems engineering
Randy Wenan, industrial & systems engineering
Shenghua Wu, industrial & systems engineering
Min Yu,industrial & systems engineering
Faculty Adviser:
Patty Buchanan, Full Time Lecturer, Industrial & Systems Engineering
About the Project:

UW Dining is introducing mobile ordering via a third party and must operationalize it to coordinate ordering and receiving products in several on-campus venues. The current generation of students have embraced mobile technology as a viable option for purchasing meal and snack options at home and at work. The student team set out to optimize the third party platform to improve throughput, increase sales and check averages, increase guest satisfaction, reduce lines, and adjust point of sale work.

A group of students

UW Housing and Food Services

Transportation and Logistics Fleet

Download project poster

Project Name:
Transportation and Logistics Fleet
Students:
Megan Hoo, industrial & systems engineering
Ben King, industrial & systems engineering
Stephen Lam, industrial & systems engineering
Yifu Liao, industrial & systems engineering
Sean de Zhen Ng, industrial & systems engineering
Faculty Adviser:
Patty Buchanan, Full Time Lecturer, Industrial & Systems Engineering
About the Project:

Bay Laurel Catering, with annual sales volume of $4.0 million, provides off-premise catering services to the campus and beyond (limited), and acts as a central production hub for grab and go products for campus cafés. The department is moving to a new home base with additional capacity in July. As the business is primarily off-premise, transportation is required to be coordinated to about 95% of the events supported. The student team analyzed the current transportations logistics and fleet and modeled scenarios which included a 10% annual growth. The recommendations included type of vehicles necessary and optimal (given volume, type/size of event, geography, and safety) and how these vehicles can the dispatched and coordinated to account for catering, delivery of commissary items, and movement of staff.

A group of students