

# Standardizing Best Practices For Tugboat Dispatching

Industrial and Systems Engineering, University of Washington Kathleen Karlson, Logan Jungkuntz, Molly O'Brien, Max LaRoche, John MacMillan, Elizabeth George



# **Introduction and Background**

- Crowley Maritime is a marine solutions, energy, and logistics service company.
- Dispatch office monitors and allocates tugboats to both assist and escort ships as they come into the harbour in the
- PNW: Pacific Northwest
- LA/LB: Los Angeles/Long Beach, and San Diego areas.

|       | Plan<br>Ahead | Longest<br>Distance | Fleet<br>Size | # Jobs<br>per Day | Avg Job<br>Time |
|-------|---------------|---------------------|---------------|-------------------|-----------------|
| PNW   | 24 hr         | 12 hr               | 6             | 10                | 1 hr 37 m       |
| LA/LB | 2 hr          | 2.5 hr              | 4             | 9                 | 1 hr 27 m       |

The dispatchers consider numerous factors to optimize the allocation of tugs and minimize the overall cost for Crowley Maritime

 Including: current schedule, geography, tide, job requirements, port regulations, weather, tugboat capacities, and much more.

# **Current State**

Scheduling jobs is based on **experience** and **intuition**, resulting in vastly different solutions from one dispatcher to the next.

There is **little** documentation on how to make dispatching decisions, and a lack of performance metrics to evaluate the success of a dispatcher.



# **Project Goal Statement**

Define a standard set of rules for dispatchers to follow in all scheduling scenarios based off of their current best practices.

Use this to create a **foundation for a scheduling** tool that can be used in the future to minimize scheduling conflicts, maximize profits for Crowley, and keep Crowley's customers happy.

# Scope

Crowley's Seattle Dispatch team

- Both day shift and night shift
- PNW and LA/LB



# **Objectives**

| Document                             | Analyze                                                         | Determine                                                                 | Develop                                                                       | Train                                         |
|--------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------|
| Document current dispatcher behavior | Perform data analysis and incorporate data into decision making | Determine and rank importance of all job scheduling factors and decisions | Develop a comprehensive and detailed description of desired dispatch behavior | Create a training package for new dispatchers |

# Methodology

1

Plan

Form

Plan

Execute

**Project** 

Close

In order to create the foundation for a scheduling tool for Crowley, we had to learn how to dispatch, and understand all factors that go into scheduling a job. Accomplished by:

#### **Collecting Initial Information**

- On site observations
- Q&A sessions
- Dispatch survey

#### **Analyzing the Results**

- Ishikawa diagram
- Communication diagram
- Job data analysis
- Quantifying survey responses

This uncovered 3 requirements essential to the success of a scheduling tool, defining what our deliverables needed to be:

- A documented process to indicate when decisions must be made
- A standard set of **best decisions**, and their exceptions for every scheduling scenario
- Historical data to back up decisions and reduce variability in dispatcher's judgement





Hand Off Deliverables

New Dispatcher

Training Package



- Dispatcher Feedback Survey
- Provide Future Recommendations



# Results





**Improvement** 

Learning Curve

**Creates Basis for** 

**Enables Continuous** 

Performance

Job Delays Down

Sub Outs Down

Tug Utilization Up

Schedule Jobs

Execute Scheduled

Strategize Idle Tugs

# Conclusion

#### **Recommendations to Crowley:**

- Add new rules to the rules table as novel scenarios arise
- Update the functional diagrams as Crowley's dispatching process changes.
- Train new hires using the rules tables and functional diagrams
- Develop a software tool to assist the dispatch team using our deliverables and data

### **Potential Software Products:**



Potential Job Finder

 Analysis of competitors tugs positions and future commitments

Alert when a Sub-In is possible

# Acknowledgements

Thank you to our professor, Patty Buchanan, our sponsor, Doron Feuer, Crowley's dispatch manager, **Derrick White**, and the entire **Dispatch Team**, for providing a huge amount of support, knowledge, and feedback for our project. Thank you to **Crowley** for providing a wonderful project opportunity!