Skip to main content

Industry & alumni


Efficient Purification of Green Surfactants

Sironix Renewables is a seed level start-up exploring manufacturing routes to their Eosix line of plant-based surfactants. As a company they are exploring multiple surfactant formulations and multiple synthetic routes to economically and in an environmentally responsible manner produce their materials. In one iteration, a series of reactions is carried out to produce the surfactant precursors, followed by a series of separations and purifications, recycling of solvents and unused reactants, and treatment of waste streams. The advantages of this specific process is a facile synthesis of the desired materials; drawbacks include the use of multiple solvents and the production of several waste streams that must be mitigated or disposed of. A thorough design and analysis of the downstream separations required for an industrial scale production based on this technology has not been done. The design and implementation of an efficient chemical separation system is essential to the economic success of this specific surfactant synthesis process. The student team worked to evaluate separation methods using literature review, analysis of Sironix’s data, and process simulations to identify one or more suitable purification methods for each of the separation challenges in this process, optimize the separation train(s) using a state of the art process simulator, port model details over to an open source process simulator to assess accuracy and viability of a more accessible software, conduct an economic analysis to determine the most beneficial separation method, and incorporate the economic analysis with provided technoeconomic data for the overall process, to determine the financial viability of the process as a whole.

Faculty Adviser

Ben Rutz, Chemical Engineering


Amy Luangrath
Cameron Sietz
Dustin Ryan
Matt Goldman
Pedro Fischer Marques