QUICK FACTS

More than 60% of our students participate in undergraduate research.

85% of our B.S. students go directly into industry.

More than 15% of students study abroad, including a quarter-long program in Scotland and labs in China or Denmark.

More than 15% of our students participate in an entrepreneurial or industry-linked special design project.

WHAT DO CHEMICAL ENGINEERS DO?

Chemical engineers use their knowledge of physics, math, chemistry, materials and energy balances, and transport phenomena to transform raw materials into useful products.

Innovations made by chemical engineers are reflected in medical advances, electronic devices, and high-performance materials. From targeted drug delivery systems to more efficient photovoltaics to protein-guided assembly of electronics, chemical engineering produces cutting-edge solutions to today’s most pressing societal problems.

WHAT PROBLEMS ARE CHEMICAL ENGINEERS TRYING TO SOLVE?

Chemical engineering is broad in application and scale, and chemical engineers contribute to innovation in every industry, designing, building and analyzing processes that range from the nano-scale to refineries larger than city blocks. Chemical engineers address issues such as:

• How do we transform low value materials into high value products?
• How do we make this product in a scalable manner without a negative impact on the environment?
• How can we scale up a process developed in a lab to reach as many people as possible?
• How can we deliver drugs right to the site they’re needed AND produce them in a way that people can afford to take them?
• Can we optimize this process to be more economical, environmentally friendly, and safe?
WHERE DO CHEME ALUMNI WORK?

Air and space	Propulsion and fluid systems, power and energy systems, materials, testing, manufacturing, processes	Boeing, NASA	
Computing, data and digital technologies	Data science, structures and scalability	AWS, Zillow, Google, Cascade Data Labs; Micro-processors and memory	Intel, Micron, IM Flash
Environment, sustainability and energy	Water treatment, air quality, clean energy, fuel cells, materials development, nuclear power, petrochemicals	Puget Sound Naval Shipyards, Trinity Consultants, Membrion	
Health and medicine	Drug delivery, imaging, synthetic biology, biotech and pharmaceuticals	Just Therapeutics, Juno, Philips Healthcare, medical school	
Infrastructure, transportation and society	Materials, concrete, auto parts, engines, air pollution and emission reduction, biofuels, supply chain	CalPortland, Ernst & Young, government agencies	
Robotics and manufacturing	Process optimization, prototyping, scaling and manufacturing	paper and pulp, PepsiCo, W.L. Gore, cosmetics, brewing	

RECENT SPECIAL DESIGN PROJECTS

- Decafino - A pouch that removes caffeine and can be composted after use.
- ElectroSolar Oxygen - Produces concentrated oxygen using only renewable resources.
- Pallicera - A new drug formulation to mask the taste of bitter drugs.
- Polydrop - Conductive polymer additives that optimize lifetime, adhesion, mechanical and electrical properties of conductive paints for vehicles.

WHAT MAKES CHEME SPECIAL?

UW ChemE is a small, close-knit department with a cohort model. Students know their classmates’ names and form study groups, and our advisers are available at a drop-in basis. Our small class sizes enable community building and innovative problem solving. Project-based teams like ChemE Car and the ChemE Brewing & Distilling club give students a chance to solve problems outside the classroom.

Students have the ability to communicate with department leadership and advise on decision making throughout the department. We have UW chapters of AIChE – the Global Home for Chemical Engineers, and WChE – Women in Chemical Engineering, with opportunities to participate in social events, professional development opportunities, and work to improve representation of women and underrepresented minorities in chemical engineering.

HOW CAN I LEARN MORE?

If you think UW ChemE might be for you, there are many opportunities to explore more. You can start doing research in a lab even before placing into a major. Take a ChemE class that’s open to non-majors, such as CHEM E 498: Kitchen Engineering, CHEM E 355 Biological Frameworks for Engineers, or CHEM E 301: Leadership Seminar Series.