This resource is for ENGRUD students who entered the UW in AUT22 or later.

Environmental Engineering Graduation Requirements
University of Washington
http://ce.washington.edu

ENGRUD Requirement Sheet – Key;
◆ = Placement Requirements;
★ = Pick one to satisfy placement requirements
Placement 1 = July 1 at the end of the first year

◆ E-FIG: ENGR 101 and GEN ST 199 (2cr)

Mathematics (24cr)
◆ MATH 124, 125, 126 - Calc w/ Analytic Geom I-III (15cr)
AMATH 351 - Intro to Differential Equations and Apps (3cr)
[pr: MATH 125] OR MATH 207
AMATH 352 - Appl Linear Algebra and Numerical Analysis (3cr)
[pr: MATH 126] OR MATH 208
IND E 315 - Probability & Statistics for Engineers (3cr)
[pr: either MATH 136, MATH 207, or AMATH 351]
OR STAT 390 - Statistical Methods in Engr. & Science (4cr)

Sciences (35cr)
BIOL 180 - Introductory Biology (5cr)
◆ CHEM 142 - General Chemistry (5cr)
★ CHEM 152 - General Chemistry (5cr)
[pr: CHEM 142, 143, or CHEM 145]
★ CHEM 162 - General Chemistry (5cr)
[pr: CHEM 152]
◆ PHYS 121 - Mechanics (5cr)
[pr: MATH 124 or MATH 134]
★ PHYS 122 - Electromagnetism (5cr)
[pr: MATH 125 or MATH 134; PHYS 121]
★ PHYS 123 - Waves (5cr)
[pr: MATH 126 or MATH 134; PHYS 122]

Engineering General Education Requirements (36cr)
Written and Oral Communication:
◆ English Composition (5cr)
ENGR 231 - Introduction to Technical Communication (3cr)
Additional Writing (4cr)

Areas of Inquiry:
Arts & Humanities – A&H (10cr)
Social Sciences - SSc (10cr)
A&H or SSc (4cr)
Diversity - DIV (3cr) - (may overlap with A&H or SSc)

Economics (4-5cr)
ECON 200 - Microeconomics (5cr) (can satisfy SSc)
OR IND E 250 (4cr)

Engineering Fundamentals (16-17cr)
★ AMATH 301 - Beginning Scientific Computing (4cr)
[pr: MATH 125]
OR CSE 122 OR CSE 160 (AMATH preferred)
A A 210 - Engineering Statics (4cr)
[pr: MATH 126; PHYS 121]
CEE 220 - Introduction to Mechanics of Materials (4cr)
[pr: A A 210]
A A 260 - Thermodynamics (4cr)
[pr: CHEM 142; MATH 126; PHYS 121]
OR M E 323 (5cr)
[pr: CHEM 142; MATH 126; PHYS 121]

EnvE Core (30cr)
CEE 347 - Introduction to Fluid Mechanics (5cr)
CEE 348 - Hydrology and Environmental Fluid Methods (4cr)
CEE 349 - Case Studies in Environmental Engineering (3cr)
CEE 350 - Mass and Energy Bal in Environmental Engr. (4cr)
CEE 352 - Intro to Microbial Prin. in Environmental Engr. (5cr)
CEE 354 - Intro to Chemical Prin. in Environmental Engr. (5cr)
CEE 356 - Quant. and Conceptual Tools for Sustainability (4cr)

Professional Practice & Capstone (7cr)
CEE 440 - Professional Practice Studio (2cr)
AND
Capstone (one from): CEE 444, 445 (5cr)

EnvE Technical Electives (15cr)
CEE 400-level coursework from an approved list.

Engineering & Science Electives (13-15cr)
• Earth Science Elective (3-5cr) See department for a list of approved courses.
• Engineering & Science Electives (8-10cr) Choice of additional CEE 400-level courses or courses from an approved list from outside the department. Maximum 6 credits of CEE 498 and 3 credits of CEE 499 allowed toward engineering and science electives.
• Additional credits as necessary to reach 13cr.

Total credits required for graduation: 180cr

Honors or accelerated sequences of chemistry, math and physics will satisfy the placement requirements.

Updated July 2022
This resource is for ENGRUD students who entered the UW in AUT22 or later.

Environmental Engineering Civil & Environmental Engineering Advising
Sample Curriculum
University of Washington http://ce.washington.edu

This is a sample four-year plan for ENGRUD students that prepares them to be able to request placement at the end of the first year. It is intended to provide a framework for ENGRUD students to reference as they create their own individual academic plan.

Courses required to request placement for ENGRUD students: ENGR 101; MATH 124, 125, 126; CHEM 142, PHYS 121, English Composition; ENGRUD students interested in EnvE should choose one of the following: AMATH 301, CHEM 152, CHEM 162, CSE 122, CSE 160, PHYS 122, PHYS 123.

First Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td>MATH 124 - Calc w Analytic Geom I</td>
<td>5</td>
<td>MATH 125 - Calc w Analytic Geom II</td>
<td>5</td>
<td>MATH 126 - Calc w Analytic Geom III</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CHEM 142 - General Chemistry</td>
<td>5</td>
<td>★ CHEM 152 - General Chemistry</td>
<td>5</td>
<td>★ CHEM 162 - General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>A&H / SSc</td>
<td>4</td>
<td>English Composition</td>
<td>5</td>
<td>PHYS 121 - Mechanics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>E-FIG: ENGR 101 & GEN ST 199</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qtr. Total</td>
<td></td>
<td>16</td>
<td>Qtr. Total</td>
<td>15</td>
<td>Qtr. Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHYS 122 - Electromagnetism</td>
<td>5</td>
<td>PHYS 123 - Waves</td>
<td>5</td>
<td>OR CSE 122 OR CSE 160</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>AA 210 - Engineering Statics</td>
<td>4</td>
<td>CEE 220 - Mechanics of Materials</td>
<td>4</td>
<td>BIOL 180 - Intro Biology I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>A&H / SSc</td>
<td>5</td>
<td>A&H / SSc</td>
<td>5</td>
<td>AA 260 - Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>Qtr. Total</td>
<td></td>
<td>17</td>
<td>Qtr. Total</td>
<td>15</td>
<td>Qtr. Total</td>
<td>13</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td>CEE 349 - Case Studies in EnvE</td>
<td>3</td>
<td>CEE 347 - Intro to Fluid Mechanics</td>
<td>5</td>
<td>CEE 348 - Hydrology & Environmental Fluid Methods</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CEE 350 - Mass & Energy Bal in EnvE</td>
<td>4</td>
<td>CEE 354 - Intro to Chemical Principles in Environmental Engineering</td>
<td>5</td>
<td>CEE 356 - Qualitative & Conceptual Tools for Sustainability</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CEE 352 - Intro to Microbial Principles in Environmental Engineering</td>
<td>5</td>
<td>ENGR 231 - Intro to Technical Comm</td>
<td>3</td>
<td>IND E 250 - Engineering Economy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>IND E 315 - Prob and Stat for Engineers</td>
<td>3</td>
<td>Additional Writing</td>
<td>4</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Qtr. Total</td>
<td></td>
<td>15</td>
<td>Qtr. Total</td>
<td>17</td>
<td>Qtr. Total</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td>Technical Elective</td>
<td>3</td>
<td>CEE 440 - Professional Practice Studio</td>
<td>2</td>
<td>CEE 444/445 - Capstone Design</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3</td>
<td>Technical Elective</td>
<td>3</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>E&S Elective</td>
<td>3</td>
<td>E&S Elective</td>
<td>4</td>
<td>E&S Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>A&H / SSc / DIV</td>
<td>5</td>
<td>A&H / SSc</td>
<td>5</td>
<td>E&S Elective</td>
<td>3</td>
</tr>
<tr>
<td>Qtr. Total</td>
<td></td>
<td>14</td>
<td>Qtr. Total</td>
<td>14</td>
<td>Qtr. Total</td>
<td>14</td>
</tr>
</tbody>
</table>

◆ = Placement Requirements
★ = Pick one to satisfy placement requirements

Honors or accelerated sequences of chemistry, math and physics will satisfy the placement requirements.

Updated July 2022