RELIABILITY ANALYSIS OF CRITICAL SYSTEMS
Alex Amimoto, Josiah Hampton, Gabrielle Lazo, Maryam Sanchez, Tionni Trieu

CLIENT OVERVIEW
Global Biotechnology company that develops cancer treatments
14 Day continuous production cycle

SYSTEMS ANALYZED
- Process Gasses
- Purified Water
- Air Handling Units
- Water for Injection
- Clean Steam
- Reverse Osmosis
- Deionized Water (RODI)

DELIVERABLES

1. Equipment Master Sheet
 - System
 - Equipment
 - Asset #
 - Mfg
 - Model
 - Redundancy
 - Location

2. Ranking Equip. & Sensitivity Analysis
 - Google Form - Teams ranked 13 pieces of equipment based off their knowledge
 - Sensitivity Analysis
 - Weighing responses of 2 knowledgeable team members
 - Sensitivity Analysis - Criteria (business, quality, Mean Time To Failure, etc.)

3. Reliability Block Diagram (RBD) & Simio
 - Used annual CMs* & PMs* work orders for MTBF and MTTR
 - Used MTBF and MTTR to get the reliability for the system
 - Validating the RBD with a simulation (used Simio)

CURRENT STATE
- Inconsistent data entry in new data system
- Equipment failure -> emergency shutdowns
- Corrective & preventative maintenance done as needed
- Only one team member with comprehensive knowledge

GOAL
Improve Seagen’s understanding of critical equipment to reduce system failure and evenly distribute knowledge

OUR PLAN
- Standardize Knowledge
- Improve Visibility of Critical Systems
- Improve Reliability

IMPACT
- 100% Implementation of equipment ranking
- 11% of data flagged as inaccurate
- $1.2 mil cost savings per batch of product. Amount at risk during a system failure

RECOMMENDATIONS
1. Cross Check Data
2. Continuously Update Deliverables
3. Monitor priority equipment (low MTBF)
4. Increase Equipment Redundancy

ACKNOWLEDGEMENTS
- Dr. Patricia Buchanan
- Dr. Christina Mastrangelo
- Dr. Eli Patten
- Michelle Song
- Seagen

*CM = Corrective Maintenance, PM = Preventative Maintenance