3D Printed Wing Tip End Cap Zhaohan Pan¹, Mohammed Asakreh¹, Takahiro Soeda¹, Jake Simeroth², Joseph Chen,² Talia Murphy³

Mentors: Richard Wiebe¹ (Academic), Michell Mellor (Boeing Engineer), Matthew Soja (Boeing Engineer) Boeing Additive Manufacturing Innovation Center ¹Civil Engineering, ²Mechanical Engineering, ³Material Science & Engineering

INTRODUCTION

- Laser Powder Bed Fusion 3D Printing: allows for complex and innovative structures.
- Modern commercial airplane wings are integrating a *wing tip* to minimize the amount of wing tip vortices (mass of whirling air).

DESIGN OBJECTIVES & BREAKDOWN

- GOAL: Design a metallic lattice to fill a cantilever coupon AND a 3D printed wing tip.
- Coupons must be printed in H and V directions.
- Coupons must withstand 250 lb load with max deflection of 0.019 in.
- Final wing tip must withstand applied 500 lb load.

Phase 1: Cantilever Test Coupons

LATTICE DESIGN

Phase 2: Wing tip End Cap

- Red strikethroughs would have issues 3D printing due to overhang as shown in Figure 2.
- Blue strikethroughs can be printed, but are complex and not material efficient.
- Final Lattice: BCC (simple, strong and easy to print)

PRELIMINARY FDM PROTOTYPES

"Arch" coupon

"Tri" coupon

Final Design: "Triangle Cut"

- Our first design, an "Arch" coupon, has overhang issues in the middle and on the sides.
- Our next design, a "Tri" coupon, has no overhang in the middle but still has it on the sides.
- Our final design, a "Triangle Cut", uses the 45° nature of the BCC. The coupon has no overhang and is material efficient.

- lattice.
- requirements.

CONCLUSIONS & FUTURE WORK

- Managing the deflection of our testing fixture was very difficult.
- For the future, we would more closely monitor surrounding deflections of our testing setup for more accurate results using more strain gauges and close video footage.

Acknowledgements

Our group would like to thank Professor Richard Wiebe, as well as Boeing engineers Mitchell Mellor and Matthew Soja for being fantastic mentors. We would also like to give a special thanks to STRATASYS for printing our coupons and wing tip in aluminum.

Mechanical Engineering Capstone Exposition

June 2nd 2022, Husky Union Building, University of Washington, Seattle

Based on FEA & testing data on plastic coupons, we printed a 0.15in thick lattice in the wing tip, and two coupons with 0.15in & 0.12in thick lattices. All three parts were printed in aluminum and had a 0.75 unit

• The 0.15in thick metal coupon and the final wing tip met the project

• Our lattice was very strong and cost efficient.