

MECHANICAL ENGINEERING UNIVERSITY of WASHINGTON

INTRODUCTION

What's a profiling float? Oceanographic instruments that collect subsurface data, and sink/float in the ocean by changing its buoyancy. An Argo Float is an example Drawback: Currently, Argo floats are powered by four lithium battery packs - a third of this power is used by the buoyancy pump alone

* Aim: Design a conceptual engine to replace a buoyancy pump with one that harvests the ocean's thermal gradient, the temperature gradient between the ocean's warmer surface and colder depths **Why:** This work will help gain a viable renewable energy source for powering an unmanned, long-term

data collecting device

PROBLEM STATEMENT

> To improve thermal-to-hydraulic efficiency of a phase change material (PCM) engine to be a practical option for increasing the lifespan of Argo Floats

Figure 1: An Argo Float's typical profile [1]

CORE FUNCTIONS

An engine to change the buoyancy of a float to move vertically in the ocean **Secondary Functions**

- Withstand changing pressures of the ocean
- Designed for 150 cycles (go up/down)
- Operate in ocean temperature range 5-25°C

Thermal Gradient Energy Harvester

Camila Kang, Rivan Patel, Ethan Simpson, Cali McFarland Dr. Daniel Deng, Dr. Andrea Cooping, Pacific Northwest National Laboratory Dr. Eli Patten, Mechanical Engineering Department

DESIGN AND DEVELOPMENT

Engine Concept Idea [2]

- (HF) moves from External Bladder (EB) to Internal Bladder (IB)
- Water Temperature decreases & PCM solidifies: PCM takes HF from the IB
- Float Ascends: Solenoid valve opens, Accumulator pushes HF into EB
- Water temperature increases & PCM melts: PCM 4. pushes HF into Accumulator

Figure 3: CAD Model of PCM Engine Argo Float

1. Float Descends: Solenoid value opens, Hydraulic Fluid

PCM Engine Model

- Used ARGO float design as starting point
- Replaced hydraulic pump assembly with PCM engine
- Key differences
- Engine does not rely on battery power, extra capacity can be used for additional sensors
- More internal volume may be available for more sensors

RESULTS / VALIDATION

Figure 4: Plots of Efficiency vs. Liquid Density of PCM (hexadecane) and Outer Diameter of PCM Hull

CONCLUSION & FUTURE WORK

Acknowledgements Thank you to Dr. Daniel Deng and Dr. Andrea Cooping from the Pacific Northwest National Laboratory, and Dr. Eli Patten for supporting us on this project.

Citations: [1] "How do floats work," Argo. [Online]. Available: https://argo.ucsd.edu/how-do-floats-work/. [2] Y. Yang, Y. Wang, Z. Ma, and S. Wang, "A thermal engine for underwater glider driven by Ocean Thermal Energy," Applied Thermal Engineering, vol. 99, pp. 455–464, Jan. 2016.

We created a simplified MATLAB model of our system to analyze it. We created scripts to find optimal parameters for the system and understand how the system's parameters effects efficiency * **Plots** of parameters affecting efficiency **Sensitivity analysis** of parameters in hopes to double the current efficiency of 0.33% **• Optimizer** to determine the most optimal geometric and material parameters

• Strengths: Configurability • Weaknesses: No physical model • Next stages of development: Build a tabletop prototype to confirm results found in analysis • Modifications: Electrical power used by sensors and frictional head losses through pipes and valves were not considered • **Application:** Work can be used in any field that requires information about the water deep underneath the ocean surface