Side Extender Flapping Issue

Ju Won Lee¹, Melissa Peters¹, Charles Ross¹, Conner Smith¹, and Shunsuke Winston¹ PACCAR ¹Mechanical Engineering

INTRODUCTION

- Side extender helps truck cabin aerodynamics
- Part made of ABS plastic and has premature failure due to flutter-induced fatigue
- Understand how to model flutter by using CFD and FEA software to support fluid-structure interaction (FSI) analysis
- Provide a standard operating procedure (SOP) for FSI validated by data collection from wind tunnel

PROBLEM STATEMENT: A way to create and validate a fluid-structure interaction model for PACCAR truck side extenders that flutter in crosswind conditions at highway speeds

CORE FUNCTIONS

- Computational and experimental model show flutter
- The computational and physical models capture strain results
- Turbulent flow run at 60, 80, and 100 mph
- High quality mesh is needed to capture wake and vortex shedding

MECHANICAL ENGINEERING UNIVERSITY of WASHINGTON

DESIGN AND DEVELOPMENT

Wind Tunnel Testing

- Foam ramp profile creates a bluff body to create turbulent flow
- Extender modeled with aluminum material in 1/8th inch, 12-gauge, and 20-gauge thicknesses
- Extender angled 9.5 degrees pressure differential induces flutter
- 5 evenly spaced strain gauges on the plate's underside for wind tunnel testing

Partitioned Fluid-Structure Interaction Displacement Pressure ABAQUS

Figure 2: Exchange field diagram of the coupled solvers

Workflow of Coupling Solvers for FSI Simulation

- Develop stand-alone simulation for Abagus and STAR FSI boundary)
- Run each simulation for convergence
- Modify Abagus input file and prepare STAR CCM+ for co-simulation
- Launch and execute co-simulation from STAR CCM+

Figure 1: Wind Tunnel **Testing Model**

CCM+ (Meshing, boundary condition, and specifying)

RESULTS/VALIDATION

	1/8th in				12 ga				20 ga			
Туре	Strain (10 ⁻⁶)	60 mph	80 mph	100 mph	Strain (10 ⁻⁶)	60 mph	80 mph	100 mph	Strain (10 ⁻⁶)	60 mph	80 mph	100 mph
Experimental	Average	16	28	41	Average	42	64	91	Average	144	188	196
Data	Peak	24	37	53	Peak	66	80	126	Peak	203	264	297
FEA (Abaqus) Data	Static Load	20	36	56	Static Load	46	83	129	Static Load	309	549	857
FSI Data					Average Peak	20 36	32 55	46 76				

Table 1: Wind Tunnel Average Strain Results

- up time

Acknowledgements

Thank you to Professor Aliseda and Professor Reinhall for your faculty mentorship. Thank you to Dave Pringle and Scott Temple for your industry expertise.

Mechanical Engineering Capstone Exposition June 2nd 2022, Husky Union Building, University of Washington, Seattle

Figure 3: Pressure and Velocity in FSI Simulation

As thickness decreased and speed increased, theoretical and observed strain diverged • 12-gauge had similar strain at 60 mph to FEA • FSI strain is half the magnitude of test results indicating room for improvement

FEA 1st wode Frequency (Hz)

41.6 26.99 10.74

Table 2: FEA 1st Mode Frequency Results

CONCLUSION & FUTURE WORK

• FSI increases accuracy at cost of meshing and set

• Continue refining mesh and boundary conditions to align with theoretical results • Applications in current and future aerodynamic studies to reduce the simulation time