SAMPLE-BASED KRYLOV QUANTUM DIAGONALIZATION FOR OPTIMIZATION

IBM **Quantum**

Sample-based Krylov Quantum Diagonalization^[1]

- Krylov diagonalization is a method by which the eigenpairs of a matrix may be approximated. Instead of diagonalizing the entire matrix, we do so in a smaller subspace generated by Krylov states; in the quantum case, these Krylov states can be $|\psi_k\rangle = e^{-ikH\Delta t}|\psi_0\rangle$ for a Hamiltonian H and initial state $|\psi_0\rangle$.
- Sample-based quantum diagonalization is a quantum diagonalization method for systems with sparse ground states meaning the ground state is a superposition dominated by relatively few basis states. By building an approximate ground state and sampling basis states to form a subspace, the ground state and energy can be approximated by projecting into said subspace and classically diagonalizing.
- These method can be combined into sample-based Krylov quantum diagonalization (SKQD), in which the subspace is built from samples taken from circuits generating Krylov states.

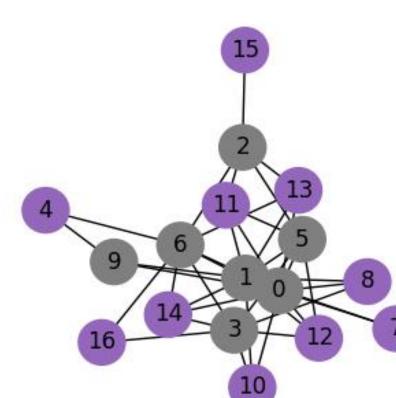
Pauli Correlation Encoding^[2]

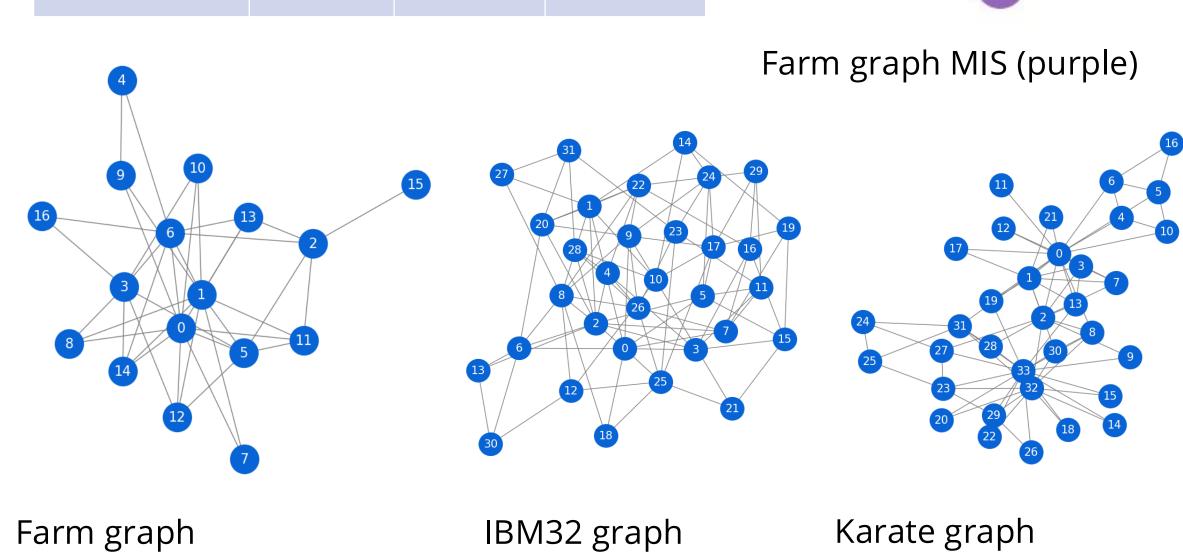
- Pauli correlation encoding (PCE) is a method of compression designed to work with variational quantum algorithms (VQAs) for performing quadratic unoptimized binary optimization (QUBO).
- PCE utilizes correlations between quantum states to decrease the required number of qubits in a quantum circuit to a maximum of O(n^{1/2}) for n variables
- Each bit value x_i is encoded as $sign(\langle \Pi_i \rangle)$ for a correlator Π_i , where is Π_i is the product of two identical Pauli matrices over two qubits (e.g., IXIXII for 6 qubits)

Maximum Independent Set

• Maximum independent set (MIS) is an NP-Hard constrained quadratic optimization problem with the goal of finding a graph's independent set – a set of nodes in which none are connected by an edge – with the maximum possible number of nodes.

Graph ^[3]	Nodes	Edges	MIS Size
Farm	17	39	10
IBM32	32	94	13
Karate	34	78	20





PCE Setup for MIS

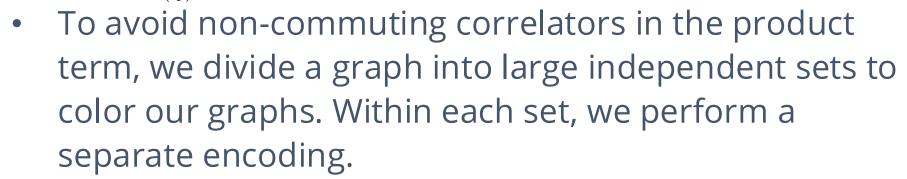
QAOA:

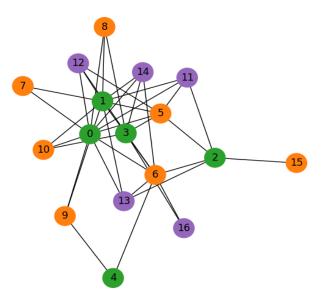
- Traditionally, the quantum approximate optimization algorithm (QAOA) is a VQA that uses an Ising Hamiltonian to generate approximate solutions to a given QUBO
- Here, we employ a flexible parameterized brickwork ansatz with a loss function to perform an approximate optimization as a benchmark for QAOA
- For positive constants M and L and with the first sum being over all edges and second over nodes, the problem can be captured with the following loss function: $\mathcal{L} = M \sum \frac{sgn(\langle \prod_i \rangle)sgn(\langle \prod_j \rangle) + sgn(\langle \prod_i \rangle) + sgn(\langle \prod_j \rangle) + 1}{\mathcal{L} = M \sum \frac{sgn(\langle \prod_i \rangle)sgn(\langle \prod_j \rangle) + 1}{\mathcal{L}}}$

SKQD:

- Because SKQD generates Krylov states using the Hamiltonian, we require the PCE Hamiltonian to remain Hermitian.
- The approximate PCE Hamiltonian is

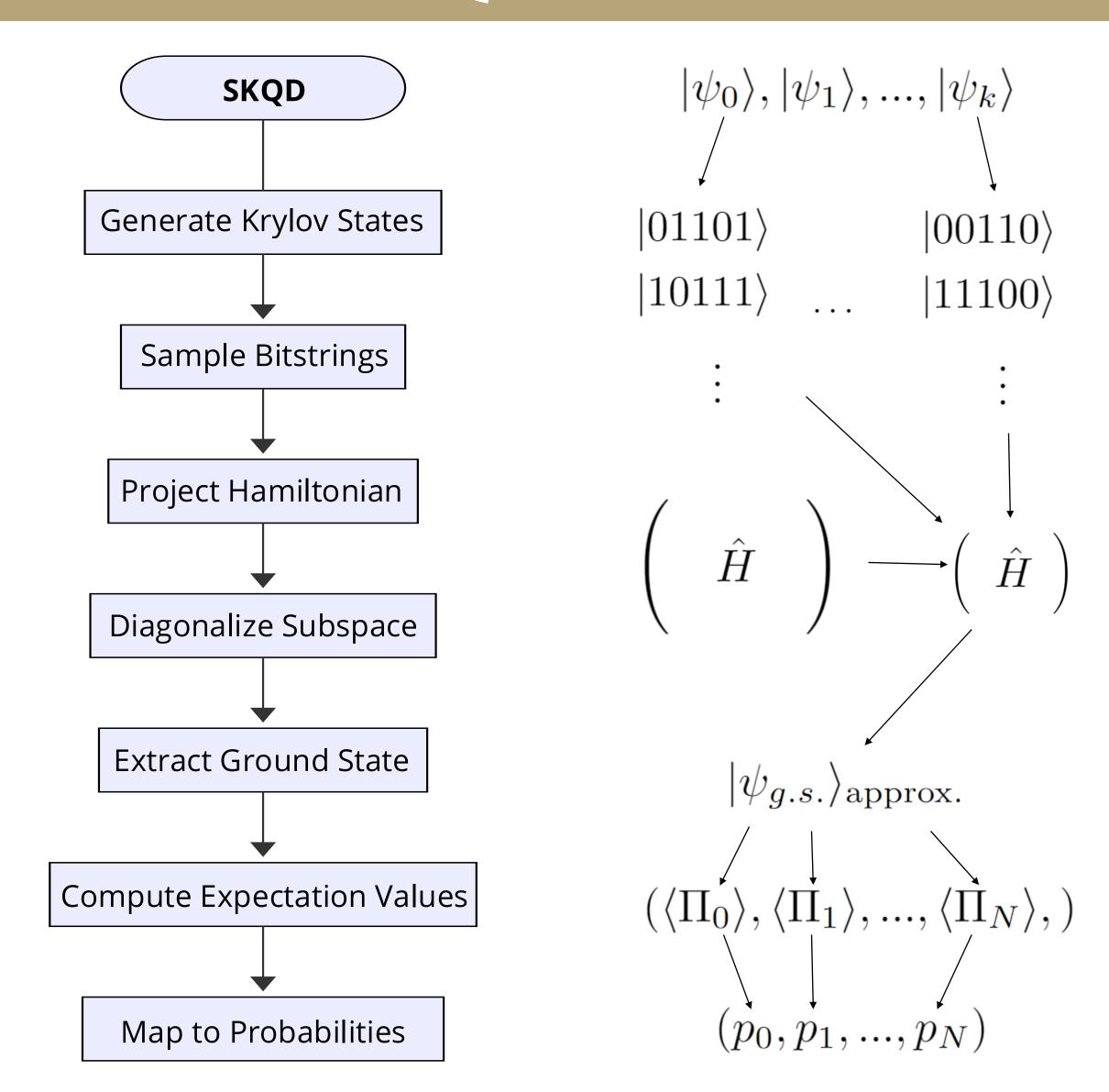
$$M\sum_{(i:i)}rac{\prod_{i}\prod_{j}+\prod_{i}+\prod_{j}+1}{4}-L\sum_{i}rac{\prod_{i}+1}{2}$$





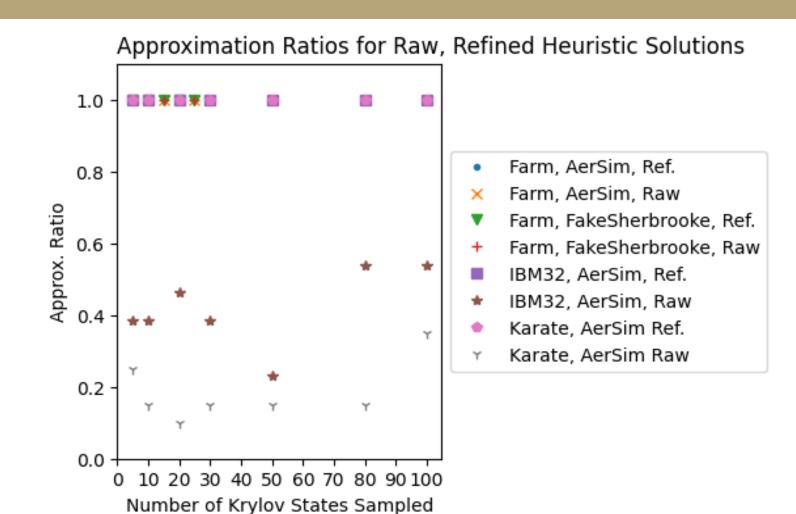
Farm graph coloring

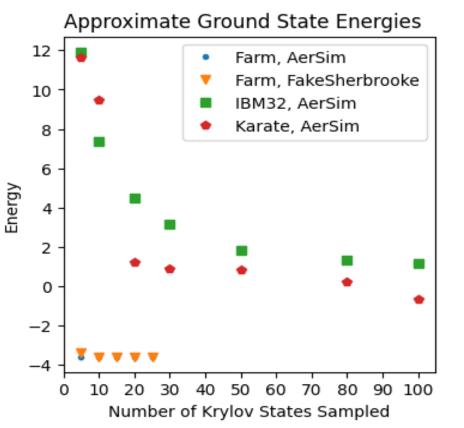
SKQD Workflow

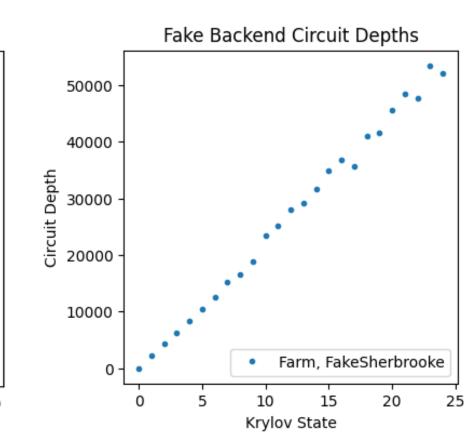


Results – SKQD, QAOA

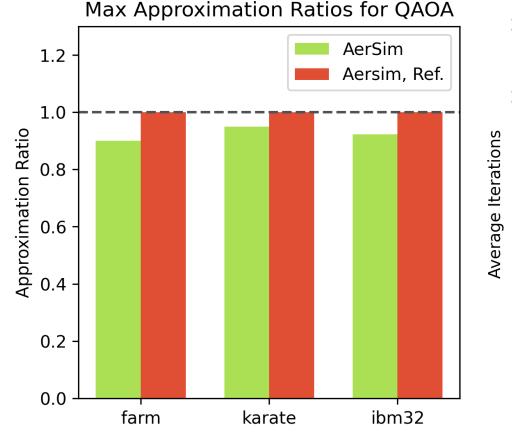
- Heuristic solutions were generated by adding bits to the set in order of decreasing probability until the set was no longer independent.
- Unrefined sets tend to have poor approximation ratios, but the refined sets all achieved an optimal MIS.
- For larger graphs, more
 Krylov states tend to be
 required for good ground
 state approximation.
- Circuit depths tend to increase linearly with k.
- Estimating 100 ns per gate operation, circuits with large k will likely require milliseconds of QPU usage.

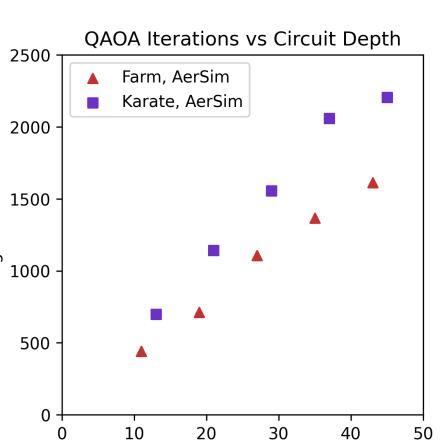


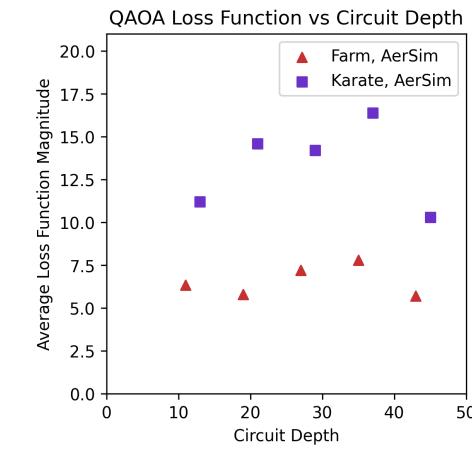




- For QAOA, the number of iterations increases with circuit depth
- Algorithm performance quantified by average loss function is sensitive to circuit depth
- Approximation ratios without refinement are >.9







Future Directions and References

Circuit Depth

- Sample-based methods with constraints can support configuration recovery – a method to recover invalid bitstrings based on information in valid bitstrings.
- Other classical optimization problems like max-cut are also good candidates for SKQD methods.
- Tuning Δt per graph could improve accuracy and reduce the number of Krylov states necessary for good solutions.

[1] Yu, J. et al. 2025. Sample-base Krylov Quantum Diagonalization. arXiv preprint arXiv:2501.09702v1 [quant-ph].
[2] Sciorilli, M. et al. 2024. Towards large-scale quantum optimization solvers with few qubits. arXiv preprint arXiv:2401.09421v2 [quant-ph].
[3] Koch, T. et al. (2025). Quantum Optimization Benchmark Library The Intractable Decathalon. arXiv preprint arXiv:2504.03832 [quant-ph].

ADVISERS: Mirko Amico, IBM

SPONSOR: IBM