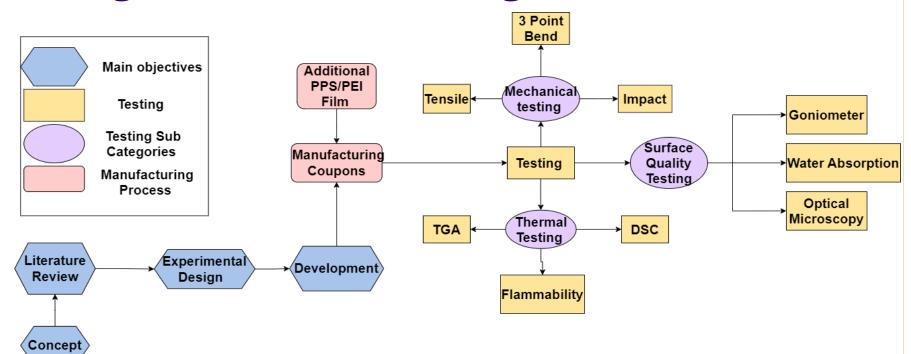

Recycled Thermoplastic Composites

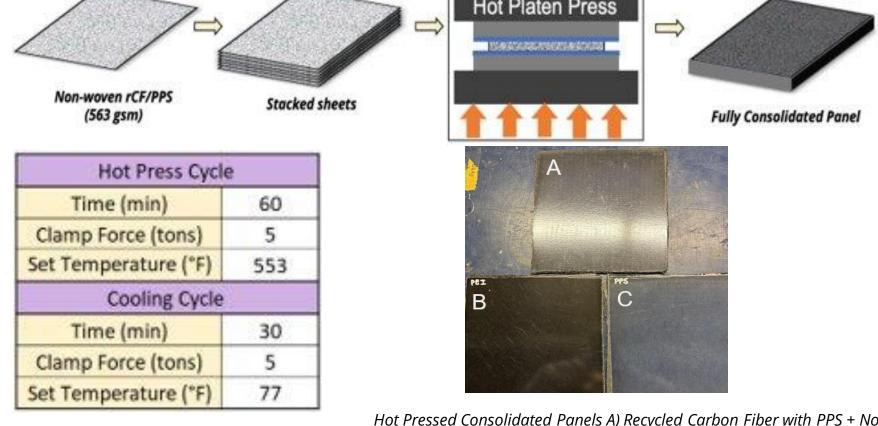
Cecilia Bailey, Jonny Harrigan, Melike Portakal, Areesa Trevino, Hung Wang

Background/Motivation

- There has been an increasing amount of carbon fiber demand as well as waste generation.
- Recycling the composites offers the opportunity to recycle carbon fiber and mitigate waste.

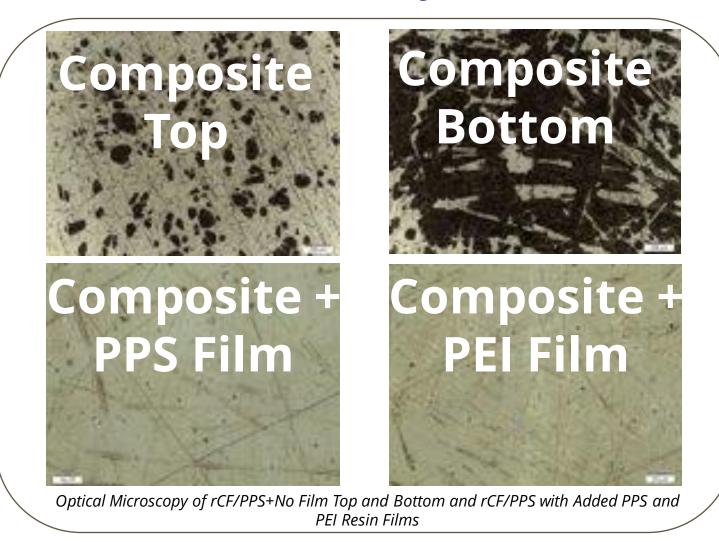

Objectives

- To characterize recycled carbon fiber comingled with PPS (rCF/PPS).
- To develop a technique for improving surface quality.

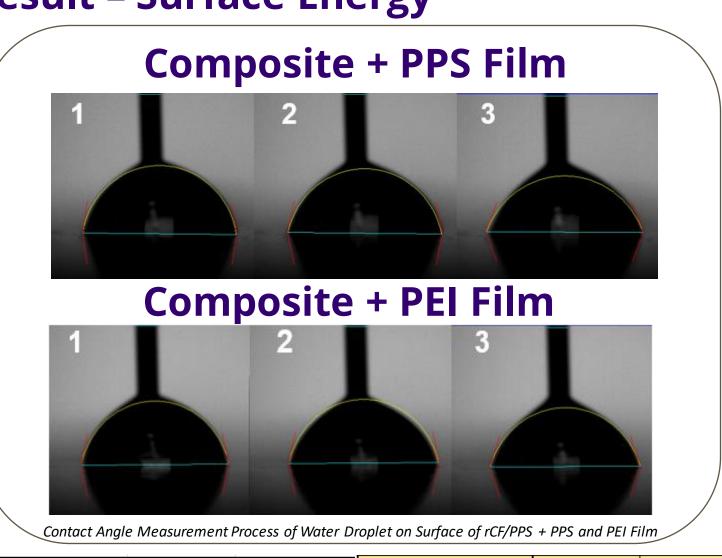

Scope

- Manufacture composite panels
- Test surface energy, flammability, impact, flexural, and tensile strength
- Provide data for application development

Design Process Flow Diagram



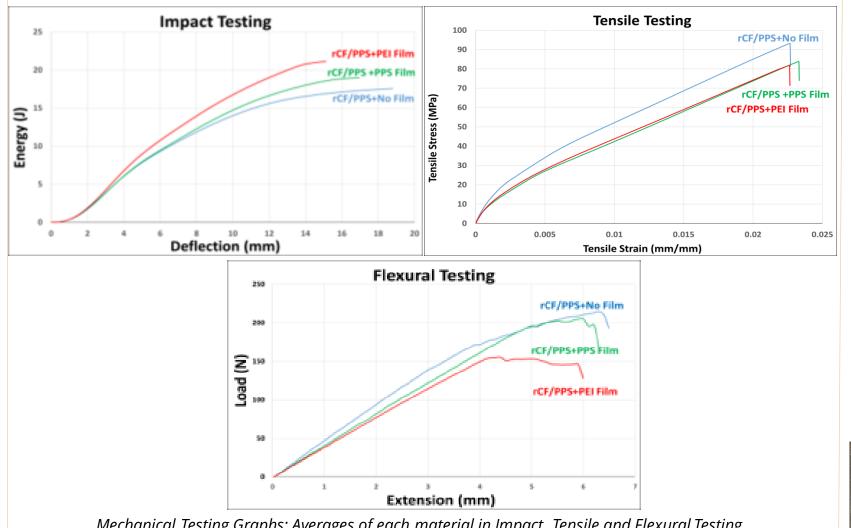
Method - Manufacturing Process


Hot Pressed Consolidated Panels A) Recycled Carbon Fiber with PPS + No film, B) Recycled Carbon Fiber with PPS + PEI film, C) Recycled Carbon Fiber with PPS + PPS film

Result – Surface Quality

- The rCF/PPS+No Film top exhibited higher thermoplastic content than the rCF/PPS+No Film
- The addition of the PPS and PEI films decreased the surface porosity.

Result – Surface Energy

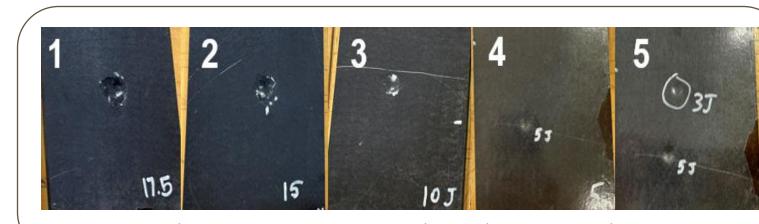


Specimen	Time	Contact Angle	Specimen	Time	Contact Angle
ID	(min)	(deg)	ID	(min)	(deg)
rCF/PPS+ 3 PPS Film	0.00	81.4	rCF/PPS+ 3 PEI Film	0.00	78.2
	2.00	78.7		2.00	78.0
	4.00	69.8		4.00	73.0

Tables 1-2: Contact Angle Measurement for rCF/PPS+PPS and rCF/PPS+PEI Film (3 Layers of Resin Film)

- The contact angle of rCF/PPS+No Film is higher than samples with added film.
- The addition of the film layers showed improved surface energy due to lower contact angle.

Results – Mechanical Characterization


Mechanical Testing Graphs: Averages of each material in Impact, Tensile and Flexural Testing

- The rCF/PPS+No Film performed the strongest in the flexural and tensile tests
- The rCF/PPS+PEI absorbed the most energy in the impact test, meaning it performed the best

Parameters:

- Impact: ASTM D7136, Sample Size: 6" x 4"
- Flexural: ASTM D7264, Sample Size: 6" x 0.5"
- Tensile: ASTM D3039, Sample Size: 10" x 0.95"

Measuring Impact Strength Threshold

Visual Impact Damage on rCF/PPS+No Film Samples at varying total energy

Specimen	Total Energy	Maximum Load	Total Deflection
rCF/PPS+No Film	(J)	(kN)	(mm)
Sample 1	17.67	2.88	12.03
Sample 2	15.50	2.55	9.95
Sample 3	10.40	2.54	6.02
Sample 4	5.30	2.77	3.22
Sample 5	3.40	2.03	2.87

Tables 3: Results from impact strength threshold testing

 Samples were no longer punctured at a drop height of 0.1346m (10.40 J)

Results – Flammability

Vertical Burn rCF/PPS + No Film

- 1.2" for burn length (<6")
- 0 seconds extinguishing time (<15 sec)
- 0 second drip flame time (<3
- 3 samples tested

Passes FAA requirement

30 Second 45 Degree Burn rCF/PPS+No Film

- 0 seconds extinguishing time (<15 sec)
- No flame penetration
- 2 samples tested

Passes FAA requirement

Results – Water Absorption

Specimen	Dry Weight	Wet Weight	Increased Weight
rCF/PPS+No Film	(g)	(g)	(%)
Sample 1	6.79	7.16	5.45
Sample 2	6.47	6.89	6.49
Sample 3	6.92	7.33	5.92

- Table 4: Results of the water absorption testing ASTM D570
- The samples were dried in an oven for 1 hour at 105 degrees Celsius for conditioning.
- The dry and wet weight were measured before and after a 24-hour submersion in water.

Future Work

- Conduct tests on virgin carbon fiber as control group to assess post-recycling properties.
- Conduct characterization tests using the same parameters as those used for rCF/PEI by Boeing company to compare the results with the data obtained from this material.
- Vary thicknesses using the same amount of plies in manufacturing process utilizing metal shims.

Acknowledgments: Davis Tran, Karen Hills & Jamie Langabeer; The Boeing Company