PREVENTING DEEP VEIN THROMBOSIS USING A WEARABLE SEQUENTIAL COMPRESSION DEVICE

STUDENTS: KAITLIN DANH, ROTEM HABA, SOPHIE HALL, ASSA PARVIZI, SANDA THANG, YUNMING YAO

Deep Vein Thrombosis
- Deep Vein thrombosis (DVT) occurs when a blood clot forms in the deep veins\(^1\).
- DVT affects pre-operative, post-operative, and bed-ridden patients that suffer from a lack of movement/poor circulation.
- If untreated, clots can break apart, resulting in a pulmonary embolism (PE).
- Existing sequential compression devices (SCDs) lack compression strength, are heavy, and restrict patient mobility.

Design Specifications
- The device shall:
 - Apply 80 mmHg of pressure
 - Be breathable, non-irritable, and adjustable
 - Weigh < 5 lbs
 - Have replaceable batteries
 - Permit ankle movements and patient mobility

Hardware
- **ESP32 Feather Microcontroller**
 - Need a centralized, efficient, yet small microcontroller which can handle many inputs and outputs
 - The ESP32 Feather is a relatively small microcontroller that can be implementable to a PCB\(^2\)
 - It features a dual-core processor

Power Design
- Need an easily accessible and rechargeable battery that can last at least 3+ hours while not being too heavy.
- Integrated 9V 600mAh Li battery for appropriate power rating, and lightest solution.
- Implemented a DC/DC converter which takes in 9V input and output a stable 5V, which would feed into rest of system.

Inflation Mechanism:
- **Sequential ascending inflation** of compression bladders (distal to proximal).
- Airflow to/from bladders regulated by pump-sensor-valve system.

Compression Bladder Fabrication:
- Decreased number of compression bladders from 8 → 6
 - Reduced total weight with smaller manifold and fewer valves.
- Physically and chemically bonded vinyl to form airtight bladders and integrate silicone tubing.
 - Inner seal: epoxy (chemical)
 - Outer seal: heat seal and heat shrink tape (physical)

Inflation Sequencing & Design
- Challenge: Inflation and deflation in the initial prototype operated too slowly, potentially allowing backflow of blood.

Inflation Mechanism:
- Sequential ascending inflation of compression bladders (distal to proximal).
- Airflow to/from bladders regulated by pump-sensor-valve system.

Motor and Valves
- Valves need to withstand a high flow rate and high pressure\(^3\):
 - 3-way universal valve
 - Power consumptions of 0.5 Watts with 5 V input
 - Supplying valve with motor with 3 L/M flow rate

Results & Future Work
- **Results:**
 - Designed 6-bladder SCD, with 80 mmHg pressure settings.
 - One inflation cycle completes in 5 seconds.
 - Device is portable, enhancing patient mobility.
 - Device fits calf size up to 21" circumference.
 - Battery life of 3.5 hours

- **Future Work:**
 - Recycle air between compression bladders to reduce power consumption.
 - Increase battery life to 6-8 hours.
 - Create a monitor to display pressure applied.
 - Design attachment extenders to accommodate for a wider range of limb sizes.
 - Write a user manual.

References & Acknowledgments
- [1] Penn Medicine - Deep Vein Thrombosis