
Edge LLM - Reducing LLM Memory Footprint to <2GB

ADVISERS: Mansi Manohara, Mahdi Heydari, Sankalp Dayal, Larry Arnstein, Amisha Somaiya

SPONSOR: Amazon

Large Language Models (LLMs) simplify life by retrieving information, serving as
personal assistants, improving learning and accessibility, and increasing
productivity. However, LLMs’ enormous size and RAM utility makes storage and
inference possible using only the most powerful computers. This fosters privacy,
security, and judicial concerns about accessing LLMs via the internet.

We aim to reduce the size of LLMs with 7 billions parameters from 30GB to <2GB
using combinations of Quantization, Pruning and Knowledge Distillation. We
benchmark how these methods interact with our model on various processing
units of our OrangePi-5 to demonstrate the viability of size-reduction of LLMs,
with minimal accuracy drops.

Objective

We hope to reduce LLM size without sacrificing much accuracy or speed of inference. General Trends:
• Hardware Throughput: Models performed significantly better using NPU while CPU

was the worst choice
• Accuracy: Most models have a higher BERT score followed by BLEURT and ROUGE

Best Performing Models:
• Hardware Throughput: Tiny Llama model (using Knowledge Distillation)
• Accuracy: GPTQ models (using Quantization)
• Perplexity: QLoRA models
• Size: Baby Llama (using Knowledge Distillation)

Each technique has its own merits and demerits and edge devices need to
prioritize LLM's use case before employing these methods. Smaller models
generally had faster throughputs, usually with less accuracy.

Results

• Different use-cases math & coding.
• LLM inference on general hardware
• Further reduce inference Latency
• General rescaling process for any

other pre-trained model, such as
Mistral, OpenELM, Llama3.

Hardware
• Orange pi 5 with Rockchip RK3588S new generation 8-core 64-bit processor,

integrated ARM Mali-G610 GPU, built-in NPU with 6Tops computing power.
• Inference speed is determined by throughput in the form of seconds per

token.
• Generally, the NPU is faster than the GPU which is faster than the CPU. This

holds true because both NPU and GPU are designed for higher throughput

Conclusion

1. QLoRA is a Parameter Efficient Fine-Tuning
technique to fine-tune LLMs without utilizing much
computational resources.

2. Applies two-level quantization by applying 4-bit
NormalFloat (NF4) quantization and then using
LoRA to fine-tune the model.

3. After fine-tuning using LoRA, the adapter layers are
then merged with the base model by adding the
learned weights.

4. Beside is a overview of working of QLoRA module
during training.

Methodologies

References:
[1] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke
Zettlemoyer., QLoRA: Efficient Finetuning of Quantized LLMs,
Advances in Neural Information Processing Systems, 2024.
[2] EJ Hu, Y Shen, P Wallis, Z Allen-Zhu, Y Li, S Wang, L Wang, W
Chen., LoRA: Low-Rank Adaptation of Large Language Models,
arXiv preprint arXiv:2106.09685, 2021.
[3] E Frantar, S Ashkboos, T Hoefler, D Alistarh. GPTQ: Accurate
Post-Training Quantization for Generative Pre-trained
Transformers, arXiv preprint arXiv:2210.17323, 2022.

Method MODEL BERT (in %) ROUGE
(in %)

BLEURT
(in %)

Size in GB 
(gguf 4-bit)

Precision Recall F1 Rouge-1 Scores
Base Original LLaMA2-7B 86.06 85.14 85.59 38.35 32.84 13

QLoRA

LLaMA2-oasst-9k-1024-default 83.62 82.33 82.97 24.94 27.88 3.8

Gemma-2B-it-oasst-12k-512-default 82 81.95 81.97 21.99 31.05 1.52

LLaMA3-8B-it-oasst-12k-512-default 82.64 83.63 83.13 27.00 37.07 4.58

Pruning

LLaMA2-GPTQ-oasst 85.57 85.02 85.30 37.48 31.67 3.56
LLaMA2-GPTQ+LoRA-wikitext2 85.22 84.73 84.97 36.48 30.69 3.56
ShortGPT-25-percent-lora-5K 81.67 82.01 81.84 21.30 45.92 2.90

ShortGPT-25-percent-lora-10K 81.99 82.27 82.13 21.99 45.83 2.90

Knowledge
Distillation

Tinyllama-oasst-1k 83.49 85.39 84.43 29.01 41.09 0.637
TinyLLaMA-distilled-oasst-15k 78.35 83.55 80.86 19.53 37.57 0.637

Baby-LLaMA 73.21 75.67 74.23 25.94 28.54 0.298
BabyLLaMA-distilled 74.10 79.12 76.52 9.06 24.60 0.222

Model in gguf format Size
(GB)

Output
Length

NPU avg
s/token

GPU avg
s/token

CPU avg
s/token

LLama.cpp 7.5 256 0.484 1.1468 2.296
llama-7b-qa-openass-9k-max-len-1024-q8 6.67 256 6.877 1.797 1.3777

Short-GPT-30-percent-lora-q2_K 1.86 1288 0.1684 0.167 0.682
Short-GPT-25-percent-lora-2-q2_K 1.94 1024 0.1873 x 0.854

llama-2-oasst1-9k-max-len-1024-v2.0_Q2_K 2.4 1024 0.3851 0.273 1.25
llama-2-oasst1-9k-max-len-1024-v2.0_Q3_K_M 3.1 1024 0.2563 0.299 1.1527
llama-2-oasst1-9k-max-len-1024-v2.0_Q4_K_M 3.8 1024 0.2435 0.27 1.115
llama-2-oasst1-9k-max-len-1024-v2.0_Q5_K_M 4.5 1024 0.307 0.345 1.311
llama-2-oasst1-9k-max-len-1024-v2.0_Q8_0 6.7 1024 0.352 0.386 1.273

TinyLlama-ggml-model-Q4_K_M 0.69 1024 0.04036 x 0.1812

Two distinct approaches for
knowledge distillation: task-specific
and task-agnostic. The former relies
on labeled data to transfer task-
specific knowledge, while the latter
employs unsupervised learning for
distillation, followed by model fine-
tuning.

2. Task-agnostic
Dataset: babyLlama-10M, babyLlama-
10M-dev
Teacher: Llama-2 360M, GPT-2 1.1B
Student: BabyLlama-58m

Knowledge Distillation

1. Task-specific
Dataset: ag_news / For finetuning:
open-assistant and dolly-15k.
Teacher: tulu-7b
Student: TinyLlama-1.1B-Chat-v0.4

Quantization

1. GPTQ & AWQ: GPTQ accelerates OBS by randomly selecting
weights to quantize, avoiding the time-consuming greedy
approach, while AWQ focuses on activation distribution to identify
crucial weights for model performance.

Pruning

1. SparseGPT & Wanda (Dataset: OpenAssistant): Reduces model
complexity through the selective removal of trivial weights, setting
certain weights to zero. This helps with hardware acceleration.
2. ShortGPT (Dataset: Tulu-v2 (ShareGPT, Stanford_Alpaca_Data,
Open-Assistant)): Directly removes layers based on dataset
importance, reducing model size and restoring its capabilities with
further LORA processing.

Quantization & Pruning

Quantized Low Rank Adapters (QLoRA)

Image 1: A flowchart depicting the continual updating of the model and evaluating the changed version for both accuracy and speed

Table 1: The results of hardware inference per model on each processing unit.

Image 3: The different ways a model can be 
pruned

Image 5: The basic training path using Knowledge Distillation. This was used in Baby 
Llama/Task agnostic methods

Image 4: The difference between two main Knowledge distillation methods

Table 2: Results of our different size reduction methods based on accuracy metrics like Bert, Rouge, and Bleurt, with the size of each model

Image 6: Perplexity Scores for LLaMA family of Models

Approach

Future Work

Image 7: Perplexity Scores for different quantized models

Image 2: QLoRA block diagram

https://scholar.google.com/citations?user=2eADy_8AAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=S6OFEFEAAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=8IqHSXYAAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=MoJFIiQAAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=aHtfItQAAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=LG_E-4EAAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=LG_E-4EAAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=hjdlwz8AAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=N3RteqgAAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=DdBvcBEAAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=75q-6ZQAAAAJ&hl=zh-CN&oi=sra

