Sustainable Flight Line Operations

Goal Statement
The goal of this project was to reduce greenhouse gas (GHG) emissions from the ground support equipment (GSE) in the 737 Max Flight Line.

Methodology

Alternatives Researched
- Gas
- Electric
- Hydrogen

Considerations
- Safety
- Technology maturity
- Emission
- Cost

Data Validation

Cost estimate
- 3 million USD
- Prior to incentives from public agencies
- Annual Payback $383149
- Payback Period 10.5 yrs

Infrastructure Mapping

Emissions Reduction
- Anually emission reduction
 - CO: 168.2
 - Nox: 80.4
 - PM10: 205.1
 - PM2.5: 11.6
 - VOC: 2380.3
 - Sox: 325.9

Simio Vehicle Charging Simulation
With the simulation, we tested parameters such as:
- Number of chargers needed
- Charger utilization
- Electricity cost

Future Work
Due to time and resource constraints, there are items that we were unable to address but we consider key for future project success:
- Test the readiness of the flightline’s electric infrastructure to support the chargers. If found lacking, upgrades need to be identified
- Collect emissions data from the 737 Max Flight Line for comparison.
- Further investigation regarding relevant regulations and standards applicable

A special thanks to:
- Boeing Team: John Wallace, Ben Shashikanth and Tim Cooper.
- UW Faculty Mentors: Dr Patricia Buchanan, Dr Prashanth Rajivan, Dr Timothy V Larson, and Timothy Gould.
- Industry Experts: Janet B, Alaska Airlines; Chad Bednar, Delta Airlines