Hybrid Electric STOL Air Taxi

Introduction
- Problem Statement
 - Current regional air travel is inconvenient and inefficient.
 - A new, hybrid-electric aircraft with strict runway requirements is to be developed to remedy these challenges.
- Motivation and Background
 - Transportation has been a driving force in growing metropolitan areas and connecting people.

Product Requirements
- STOL: 300ft runway with 80ft vertical obstacle at both ends.
- Cruise speed of 150 knots (160 knots preferred).
- Hybrid electric propulsion with tech available in 2028.
- 400 nmi range plus 45 minute reserve.
- 3 passengers + 1 pilot.
- 15 minute turn-around time between missions of 50 nmi.

Aerodynamics and Flight Mechanics
- Stall Speed: 35 knots.
- Cruise Speed: 170 knots.
- Range: 450 nmi (including reserves).
- Max Lift Coefficient of 3.4 using high lift slats and Fowler flaps.
- Takeoff and landing achieved in 300 feet at max weight.

Design Approach
- Weight approximation using Roskam’s rapid weight sizing method.
- Trade studies vs. other aircraft to adjust body sizing.
- In depth performance review for takeoff, landing, cruise, and power characteristics.
- Digital DATCOM to finalize sizing and stability of aircraft.

Power Systems and Propulsion
- Max Lift Coefficient of 3.4 using high lift slats and Fowler flaps.
- Takeoff and landing achieved in 300 feet at max weight.
- Stall Speed: 35 knots.
- Cruise Speed: 170 knots.
- Range: 450 nmi (including reserves).

Key Specifications
- 241 hp turboshift engine.
- Projected technology available in 2028.
- Lithium Sulfur Battery.
 - Battery power density: 1.41 hp/lb ~ 2.32 kW/kg.
 - Battery energy density: 796.53 Wh/lb ~ 514 Wh/kg.
 - Voltage: 305V.
 - Maximum current: 630A.
 - Cycles: 1500.
 - (until 80% capacity).
 - 100% battery energy utilization.
- Fuel cost: $96/hr.
 - Cessna 182 [a]: $60/hr.
 - Airbus A350 [b]: $209/hr.

Completed Work
- Design approach trade studies.
- Overall aircraft characterized and sized.
- Flight parameters.
- Aircraft performance and stability.
- Propulsion architecture.
- High level design.
- Analysis of flight cost and fuel consumption completed.

Future Work
- Detailed component design required to build prototype.
- Minimization of power system and subsystem electronics.
- Actuator design.
- Advanced structure optimization.
- UAS demonstrator.
- Flight testing.
- Study on passenger comfort during steep climbs and descents.

Acknowledgments
- We thank The Boeing Company for funding this project as well as their continued advice and support.
- Industry Advisers:
 - Abe Askari
 - Cam Carnegie
 - Bill Connell
 - Matt Ott
- Faculty Advisors:
 - Professor Ebrum Cecime
 - Professor Kristian Mortensen
 - Professor JK Yang
- Team Members:
 - Say Sandimsky
 - Jordon Ho
 - Max McDonald
 - Cory Lock
 - Ben Rizzardi
 - Andrew Quam
 - Ashafl Mendera
 - Pierce Paynter
 - Mozghan Mirzabashlai

Citations