UMNL Scheduling & Inventory Optimization

Max Yang • Kyle Luiten • Ryan Cheng • Eugene Tou • Yash Raj Sinha

Background
TE Connectivity designs & manufactures connectivity and sensor parts. The Automation Manufacturing Technology team is looking to minimize total inventory and production costs of their Universal Mater-BoLock manufacturing processes.

Problem Statement
Connector assembly machine schedules do not include C segment (low volume) parts, and as a result the process is not optimal.

Current State
Machines 1455 and 1456 are running 24/7, and the production is separated by volume into three product segments—A, B, and C.

Forecast
- 20% overestimation
- 32% parts within +/-10% actual demand

Scheduling (Machines 1455 & 1456)
- 1455 Utilization ~75%
- 1456 Utilization ~50%

Objectives
- Improve demand forecasts based on historic volumes
- Recommend an optimized sequence for scheduling
- Recommend minimum order quantity for C segment parts

Data Input
- Historic Purchase Order Data
 - PN: unique part number
 - Request Date: order number with customer request date
 - Shipment Quantity: monthly demand volume
- Scheduling Data
 - Part Description: housing, terminal, segment, part features, # of positions
 - Sequence: production sequence
 - Standard Rate: cycle time
 - Setup Time: changeover/setup time
 - Lot Size: TE current lot size

Data Restructuring
1. Analyze Current Schedule and Order History
2. Ingest Historic PO Data
3. Aggregate by PN & Order Month
4. Remove duplicate purchase orders

Forecast
- Predictive Methodology
 - Exponential Smoothing Models [1]
 a. Double Exponential
 b. Additive Holt-Winters
 c. Extended Holt-Winters
 d. Low Volume/C Segment Forecast
- What is Exponential Smoothing?
 Technique for smoothing time series data (i.e. the historic shipment quantities) to forecast future demand

Data Reconstruction
- Why use a forecast?
 Forecasting allows for:
 - Predicting demand several months into the future
 - Determining optimized scheduling based on required production quantities
- Forecast Results
 - One month forecast is more accurate for A & B segments.
 - Two month forecast is as accurate for A and more accurate for B.
 - C segment forecast is less accurate but more stable.

Scheduling
- Scheduling Methodology
 - Lean Manufacturing
 a. Reduce machine set-up time
 b. Reduce non-valued activities
 c. Better utilize resources
- How is machine set-up time reduced?
 - Balance C segment production
 - Produce C segment parts bi-weekly
 - Regroup parts with similar setups
- Why produce C segments bi-weekly?
 - Balance productivity and efficiency
 - Include a safety buffer for shortages
 - Reduce impact of forecast errors
- Why reduce set-up time?
 - Increase machine utilization
 - Increase schedule availability
 - Increase overall production size

Minimum Order
- Minimum Order Quantity Methodology
 - reorder point formula
 - Safety stock inventory
 - Just-in-time production
 - Demand forecast
- How is the lot size calculated?
 - Cycle Stock: calculated using average daily demand and replenishment lead time
 - Average daily demand is based on forecasted demand
 - Replenishment lead time: 7 days for A&B segment parts
 - 14 days for C segment parts
 - Buffer Stock: calculated using service level, CoV, and cycle stock
 - CoV = Coefficient of Variation
 - Safety Stock: calculated using safety factor, cycle stock, and buffer stock
 - Lot Size: calculated using cycle stock and buffer stock

Assumptions
1. Historical sales data is accurate
2. Inventory cost is minimal, but not negligible
3. Products are held in inventory for a finite duration
4. C segment products are only produced when they are ordered

Constraints
1. Limited historical data may hinder the accuracy of the forecast
2. Time available for changeovers cannot exceed current operator availability
3. Finite machine operating time - optimized schedule will be constrained to hours available in a work

Impact

Financial Metrics
- **17% cost reduction for A & B segments**
- **11% cost reduction for C segments with bi-weekly production**

References

Acknowledgments
Special thanks to:
- TE Connectivity for giving us this amazing experience
- Soumya Subramonian, sponsor, for leading us throughout this project
- Patricia Buchanan, Professor, for her expertise and support

Note: We are not able to share the exact formulas as they are confidential.