

UMNL Scheduling & Inventory Optimization

Max Yang • Kyle Luiten • Ryan Cheng • Eugene Tou • Yash Raj Sinha

Background

TE Connectivity designs & manufactures connectivity and sensor parts. The Automation Manufacturing Technology team is looking to minimize total inventory and production costs of their Universal Mate-n-Lock manufacturing processes.

Problem Statement

Connector assembly machine schedules do not include C segment (low volume) parts, and as a result the process is not optimal.

Current State

Machines 1455 and 1456 are running 24/7, and the production is separated by volume into three product segments--A, B, and C.

Forecast

20% overestimation 32% parts within +/- 10% actual demand

Scheduling (Machines 1455 & 1456) 1455 Utilization ~75% 1456 Utilization ~50%

Objectives

Improve demand forecasts based on

 $\square \square$

Å٠ð

Recommend an optimized sequence for scheduling

historic volumes

Recommend minimum order quantity for C segment parts

Assumptions

- 1. Historical sales data is accurate
- 2. Inventory cost is minimal, but not
- negligible 3. Products are held in inventory for a finite duration
- 4. C segment products are only produced when they are ordered
- **Constraints** 1. Limited historical data may hinder the accuracy of the forecast
- 2. Time available for changeovers cannot exceed current operator availibility
- 3. Finite machine operating time - optimized schedule will be constrained to hours available in a workweek

Minimum Order

Minimum Order Quantity Methodology

- Reorder point formula
- Safety stock inventory
- Just-in-time production
- · Demand forecast

How is the lot size calculated?

- Cycle Stock: calculated using average daily demand and replenishment lead time
 - Average daily demand is based on forecasted demand
 - Replenishment lead time: 7 days for A&B segment parts;
- 14 days for C segment parts • Buffer Stock: calculated using
- service level, CoV, and cycle stock • CoV = Coefficient of Variation
- Safety Stock: calculated using safety factor, cycle stock, and buffer stock
- Lot Size: calculated using cycle stock and buffer stock

How is the MOQ calculated?

- MOQ is calculated using minimum set-up time, cycle time, and forecasted demand
- Recommended MOQ is ~500 to ~800 pieces.

Note: We are not able to share the exact formulas as they are confidential.

Acknowledgments

Special thanks to:

- TE Connectivity for giving us this amazing experience
- Soumya Subramonian, sponsor, for leading us throughout this project
- Patricia Buchanan. Professor, for her expertise and support