Morgan Lens Assembly – Partial Automation

Project by the Morgan Lens Team:
Yasser Bayomi, Brandon Joannes, Trevor Tran, Ken Yamada, Jason Zhou
Industrial and Mechanical Engineering

Special thanks to our advisor Patty Buchanan, and our industry sponsor Steve Bixby

Index of Performance
$400-800 savings in production costs per lot
13-23% reduction in waste
12 hour reduction in setup time per lot
20% reduction in rejection rate

Current State
- Assembly
 - Current method: ‘Homemade’ finger cots
 - Goals:
 - Reduces operator fatigue
 - Increases handling efficiency
 - Solution: more ergonomic and efficient assembly method
- Handling Trays
 - Current method: Assembled lenses stored in plastic bin then manually placed in sealer
 - Goals: reduces double handling, inspection steps, and time
 - Solution: use cart and handling trays to put assembled lenses in packaging, make transfer between processes quicker, and for storage
 - Implementation: use at assembly table and sealer for organization and quick placement into sealer 6 at a time

Process Improvement Design
- Assembly
 - Current method: operators memorize rejection criteria
 - Goals: reduces inconsistency and subjectivity
 - Solution: Checklist of criteria for a defective component based on the standard operating procedure
 - Implementation: place checklist on assembly table for easy access
- Rejection Criteria Checklist
 - Current method: defect assessment with naked eye
 - Goals: reduces inconsistency, subjectivity, and costs
 - Solution: using a camera system to magnify and compare defects to a calibrated scale
 - Implementation: use at assembly table only to verify suspected defects
 - Preliminary test: confusion matrix
 - 20% of rejects are not actually rejects
 - Result shows operator’s over-critical assessment

- Handling Trays
 - Current method: manual check for presence of device with naked eye
 - Goals: eliminates shipping empty packages
 - Solution: using a scale to confirm existence of a device inside a package
 - Implementation: use checkweigher to automatically reject empty packages

Result/Impact
- Production
 - Assembly
 - Promising initial tests but more long-term testing needed
 - Handling Trays
 - Reduction in over-handling of assembled lenses
 - Reduction in necessary inspection steps caused by additional handling
 - 12 hour reduction in setup time per lot
 - Stamping
 - Reduction in subjectivity of stamp location
 - Decrease in rejected units by 3%
 - Savings of $1 per unit or $200-400 per lot

- Inspection
 - Rejection Criteria Checklist
 - Increase in inspection consistency
 - Increase in effectiveness of training
 - Camera
 - Increase in consistency without sacrificing speed
 - Reduction in subjectivity within quality inspection
 - Reduction in rejection rate by 20%
 - Increase in effectiveness of training
 - Scale Check
 - Implementing a mistake proofing device (poka-yoke)
 - Facilitation of empty package
 - Prevent loss of goodwill

Further Research
- Assembly
 - Explore new designs & materials
- Handling trays
 - Critical VIP calculation & simulation to determine optimal batch size
 - Investigate use of permanent ink on plastic for more cost-effective mistake facilitation
- Checklist
 - Digitize checklist to reduce clutter & focus on 5S
- Camera
 - Automated quality inspection prior to assembly
- Scale check
 - Fully-automated detection method