Food Enrichment Bag Handling Solution for Food Safety Testing

Andre Chacon • Oliver Kjellgren • Nicholas Jones • Rajat Singh • Maya Stuessi

Special Thanks to MilliporeSigma, Lisa John, Jordan Kestel, & Patty Buchanan

Introduction/ Background

Project Description

Larger bag standards in the food sampling industry have resulted in less efficient and ergonomic working conditions for lab technicians

Goal Objectives

Increase Safety . Easy Ergonomics · Process Improvements

Our Problem

How can we improve the food sampling process, with particular emphasis on reducing the number of people involved and the effort required of the lab workers?

Narrowing the Scope

How can we reduce the number of people needed to lift the sample bags into the incubator and improve the ergonomics of this step in the process?

Why we chose to improve the current cart:

Our Solution

Part of the process

within our scope

Disposal

Process

Aspirate 1ML

of Sample

Food Safety Testing Process

Move to

Incubator

Incubate

(24hrs)

Move to

Sample Table

- Improve lifting process using hydraulics

Stabilize

(30-60min)

Add NFDM to

Sample

Add Seeded

NFDM to Sample

Transfer Media

to Bag

- Change lifting motion to sliding motion using rollers
- Reduce labor and time for agitation process using rollers

Constraints

Process Flow

Diagram

Prewarm Media

(Overnight)

Label&Color

Code Bags

Trim Sample

Bags

Transfer Media

to Cylinder

- Unable to visit the facility in person due to remodeling - Shipping delays due to COVID-19

Finite Element Analysis (FEA)

Example: FEA for L-Brackets

FEA	Effect of length of max. stress					Effect of Width on max. stress			
Dimensions	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	Iteration 6	Iteration 7	Iteration 8	Iteration 9
Length	0.875	1	1.125	1.25	1.5	1.875	0.875	0.875	0.875
Width	0.875	0.875	0.875	0.875	0.875	0.875	1	1.125	1.125
Height	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Thickness	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Max Stress	238.7	242	250	249.7	242	242.6	294.5	342.1	398.3
Max Deflection	0.424	0.422	0.422	0.422	0.422	0.42	0.638	0.925	1.268

J.422 U.42		0.422	0.42	0.038	0.925		1.208	
			Effect of	Height	Effect of Thickness			
		Iteration 10		Iteration 11	Iteration 12	Iteration 13	Iteration 15	
0.875			0.875	0.875	0.875	0.875		
	0.875			0.875	0.875	0.875	0.875	
	0.625			0.75	1	1	1	
0.1 190 0.336			0.1	0.08	0.15	0.25		
			157.5	172.1	59.4	23.8		
			0.279	0.418	0.05822	0.0122		

 Length (A) varies 0.875" - 1.875" Width (B) Height (C) Thickness(D) determined by FEA

Fig [1]: Excel Spreadsheet used for L-Brackets

Purpose

Simio Model

Current System

Prep Sample w/

3.631min +- 10%

Worker Utilization:

Incubator Transfer in

Agitation:

4 sec +- 10%

Time:

19.21%

Ensure the equipment is safe

Load is transfered from the rollers to the cart top

Analysis

Assume total weight 500lbs FOS of 1.5 Max load 750lbs

Load on each bracket = 412N

Conclusion

We want: Small (A) Small (B) Large (C)

Large (D)

Utilization

- Only one technician needed for both lifting and agitating

Custom-built cart top modifications

- Sits at very end slot for

- Sits against boxes to hold

Agitating Improvements

- Previously: approx. 100sec/batch
- Now: approx 20sec/batch

Finalized CAD Model

Key Features

- 12 rollers total

Final Solution

& Impact

Final Deliverable

- Locking bar

Hydraulic lifting Cart

- Stainless steel rollers

agitation

when moving

- L-Brackets used to elevate surface
- Locking bar sits in slits made 1/2in apart

Physical Prototype

Final Impact

- (20 bags in one batch)

Increased safety when lifting boxes

Design Iterations

Brainstorming Phase -cart shoter

3D CAD Modeling

Original CAD Models - Cart top

modifications

- Opening and closing sidewall

Testing Roller Spacing with 3D Printing

New System

Agitation:

6 sec +- 10%

Time:

18.19%

Prep Sample w/

3.531min +- 10%

Incubator Transfer in

Worker Utilization:

Resource Utilization

of Lab Technicians

Decrease in resource

utilization = lab techs time

being used productively

Fig [2]: Testing 5, 4, & 3 rollers per box

Recommendations

Fig [3]: Example CAD Model Open/Closing Mechanism

Future Projects

Mechanism to open/close sample bags

- Increases safety
- Reduces lab tech needed to help keep bag open when taking 1ML sample

Automating the hydraulic cart