So we developed a wireless pulse oximeter that measures SpO2, SpCO, and SpMET before displaying the measurements on a separate computer screen, in real-time. This will allow emergency medical teams more flexibility in the field compared to existing devices.

Terminology

SpO2	Blood Oxygen Saturation, The proportion of oxygen carrying red blood cells. Normal levels are between 95% to 99%.
SpCO	Blood carbon monoxide saturation, high levels can indicate various diseases if too high (anything above 2%).
SpMET	Methemoglobin saturation, which can indicate various poisons.

Plethysmograph (Pleth) Waveform
The raw absorption data that correlates to the blood pulsing through the artery, is used in pulse oximetry to find a heartbeat.

Objective

- Current pulse oximeter designs either are too bulky to be used practically by paramedics or do not detect SpCO and SpMET, measurements that are standard in the medical field.
- So we developed a wireless pulse oximeter that measures SpO2, SpCO, and SpMET.
- Measurement and display of SpO2, SpMET, and Pleth waveform.
- Minimum sampling rate of 100 Hz
- Wireless communication between pulse oximeter device and display
- Sensor values held in characteristic and event handler put in place for updates
- Digital data filtering and processing script
- 3D printed housing that blocks most ambient light and holds sensor module in place

Modules

- **AFE 4403** – an analog front end, from Texas Instruments, equipped for basic pulse oximetry. This chip houses a programmable timer module that controls an ADC, SPI, and a LED driver designed for two LEDs.
- **Custom Sensor Module** – since the AFE 4403 could only drive two LEDs, a custom PCB was made in order to control 3 LEDs with the AFE 4403’s LED driver.
- **HM-10 Bluetooth Module** – an Arduino controlled Bluetooth module that would transmit the ADC readings to our display.
- **Web Application Display** – receives ADC readings over Bluetooth from the HM-10 before computing and displaying the SpO2, SpMET, and the pleth waveform.

Limitations

- Less effective on individuals with a darker skin tone and ineffective on patients lacking a normal pulse, such as patient’s with mechanical hearts.
- Less effective on patients with finger sizes that are extremes compared to the average finger size.
- Sensitive to physical disturbances.

Current Progress

- Calculations for SpO2 confirmed by readings in the correct range for a healthy adult.
- AFE and Bluetooth modules integrated together to communicate measurements to web application.
- Custom PCB, for 3 LED peripheral sensor, integrated with AFE and used to take Pleth waveforms.
- 3D printed prototype for housing has been completed.

Conclusion and Future Work

Though wireless communication complicates the pulse oximetry process, our work has shown that is possible:

- We can achieve a sampling rate of 100 Hz by operating at a baud rate of at least 19200.
- Post processing of data is time efficient.
- The key components for the device are small enough to be housed in an easy to apply cuff.

The next steps for this project will be:

- Adjust algorithm for 4 wavelengths and the calculation of SpMET
- Pulse oximeter testing setup
- Calibrate pulse oximeter to improve accuracy
- Design and implement a mobile power supply
- Post processing of data

Acknowledgments

Faculty: Prof. Payman Arabshahi, Prof. Jennifer Vining
Teaching Assistant: Shrutti Mira