T-MOBILE NB-IOT PACKAGE TRACKER

STUDENTS: DANIYAL ZULFIQAR, RYAN ROS, TYLER LA, YITONG SUN

NB-IoT

- Narrowband Internet of Things (NB-IoT) is a modern network radio technology that focuses specifically:
 - Wide coverage
 - High connection density
 - Optimized battery life
 - Low cost.

Wio LTE Cat NB-IoT (SARA-N410) Tracker

- Twilio Narrowband board equipped with:
 - T-Mobile Narrowband SIM
 - U-Box SARA-N410 Transceiver module.
 - Grove Ultrasonic Rangef 2.0.
 - =1050mAh 3.7V battery.
 - U-Box Max-M8Q GNSS modules.
 - LTE-Antenna.

Block Diagram & Feature

- MQTT Broker will:
 - Receive data from device.
- MQTT Monitor will:
 - Monitor the MQTT Broker.
 - Upon receiving a message, it will send the information to the Web API.
- Web API will:
 - Act as a central hub for all cloud communications.
 - Send data received to the MySQL Database for storage.
- MySQL Database
 - Grab data from the MySQL Database to send to the frontend.
- Frontend will:
 - Display data received from the Web API.
- MQTT Database will:
 - Store any data given to it from the Web API.

MQTT

Why MQTT?
- Lightweight protocol – Fast data transmission.
- Minimized packet size - Low network usage.
- Low power usage – More battery life.

How MQTT Works?
- MQTT Protocol is based on client/server.
- Server is called MQTT broker.
- Client are the IoT devices.
- Topics a place where clients put/retrieve a message to/from.
- Clients/Server communicate by publishing/subscribing to Topics.
- Client send (“publish”) to Topic on server. Client retrieve “subscribes” to topic on the server.
- Broker (Server) manage publishing/subscribing actions to target topic.

Frontend

- Using HTML and JavaScript, we constructed a frontend in which the user will be able to find information about their package.
- The frontend calls an API that we constructed which will send the appropriate data from a MySQL database sends it back to the frontend.
- Using the data the frontend received from the API, the frontend displays the data in an informative manner for the user.

Please enter device ID

<table>
<thead>
<tr>
<th>ID:</th>
<th>Track Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Information</td>
<td></td>
</tr>
<tr>
<td>Battery Remaining: 21%</td>
<td></td>
</tr>
<tr>
<td>Has Not Been Moved In 6 hrs</td>
<td></td>
</tr>
</tbody>
</table>

Server Side / Broker HiveMQ

- HiveMQ Broker is used for connecting IoT devices.
- HiveMQ is deployed to AWS EC2 instance with the help of built in Amazon Machine Image (AMI).
- The image to the bottom left shows an AWS instance.
- The bottom right image shows the HiveMQ control center indicating the HiveMQ broker instance is deployed and running.

Box design

- Design for holding the IoT device inside the package is needed in order to protect the device from transportation and discovery.

- Advantages:
 - Easy to return.
 - Less material.
 - Minimal protection.
 - Prone to shacking.

- Disadvantages:
 - Not a seamless design.
 - Very noticeable once opened box.

Result

- The Twilio NB-IoT Device is embedded using a package with a false bottom concept.
- False Bottom helps to conceal the device as it tracks the package while staying out of sight from those who have malicious motives.
- The Ultrasonic Sensor is embedded behind a sheet of acoustic cloth on the third black bar.
- This sensor tracks if an item from the package is removed based on a set distance (30 cm).
- The Twilio Device constantly tracks and monitors the package by sending data through MQTT in the following format: “Device ID, Latitude, Longitude, Package Status”.

Future Work, References, and Acknowledgments

- Battery information
- Possible upgrade to ultrasonic sensor
- Movement/Motion notice of the box
- Estimated time of arrival in frontend
- Geo-Fencing to create geographical boundaries.

References: