
> OfferUp
• OfferUp is a mobile based online shopping service provider with 44 million users that 

allows you to sell everything from clothing to cars.
• They are a C2C marketplace with emphasis on in-person transactions.
• It ranks top 10 of Pacific Northwest private companies (Geekwire 200).

> Project background
• Sellers need to load images of the item and write a verbal description when posting 

on OfferUp.
• Buyers can find their desired items through search better if OfferUp can show search 

results based on the images
• Our team can use deep learning and image classification technology to classify 

images based on type (clothes vs shoes) and category (gender and shoe types).

> Deep Learning
Deep Learning is a type of machine learning that trains a computer to perform human-
like tasks, such as recognizing speech, classifying images or making predictions.

> Major steps to build a model

1. Preparing the dataset
2. Training the Model
3. Deploying the model

> Project overview

OBJECT CLASSIFICATION IN IMAGES VIA DEEP 
LEARNING WITH OFFERUP
ZHENG HONG TAN, JUNNAN KOU, ZIQIAO XU, SANDEEP J RAMANATHAN
INDUSTRY MENTOR: ALEXANDRA TESTE
FACULTY MENTOR: PROFESSOR RANIA HUSSEIN

Generally, preparing the dataset is the most important step in the 
process of building a model. It is the base on which everything else is 
built. The clearer your dataset is, the better your model can perform.

> Preliminary Steps

• Download and label images (keyword-based scripts).
• Write scripts that detects regular expressions (RegEx) to create a CSV 

file to show each image with its corresponding labels.

• Organize the images by label.

> Data/Image preprocessing

Google AutoML
• Create a GCP account and a bucket on GCS.
• Load the original images for AutoML training on their 

respective category folders.

Transfer Learning
• Resize images to 224x224 pixels.
• Perform normalization. Divide the image pixel value by 255 to get a 

result in the range from 0 to 1.

When training the model, one of the metrics that we could use to 
evaluate how well the model performs on unseen data is the validation 
accuracy. The better the validation accuracy, the better the model can 
predict a correct category for which a new item belongs to.

> Google AutoML

• We leveraged Google’s AutoML Neural Architecture Search (NAS) to 
train a model that distinguishes clothes from shoes.

• We then used AutoML to build a gender model to identify male vs 
female vs unisex clothes and shoes.

• The gender model did not have excellent accuracy because the 
product design for some clothes or shoes types like sneakers and 
boots vary little between genders.

> Transfer Learning

• We decided to classify different shoe types to assist the gender model 
using Transfer Learning on TensorFlow 2.0.

• We leveraged transfer learning. We tested both VGG16 and 
MobileNetV2 as the initial architectures. We benefited from this 
pretrained base model and trained only its last layers along with a few 
additional layers that we added.

• We tuned the class weights to adjust for class imbalance.
• We evaluated the model’s performance and update the parameters in 

training.

DEPLOYING THE MODEL

References

> [1] “Creating Storage Buckets”, Google Cloud. [Online]. 
Available: https://cloud.google.com/storage/docs/creating-buckets>

> [2] “Edge Containers Tutorial”, Google Cloud. [Online]. 
Available: https://cloud.google.com/vision/automl/docs/containers-gcs-
tutorial

> [3] peterpetrov826, “Transfer Learning 
and ImageDataGenerator in Keras,” Kaggle, 15-Jul-2019. [Online]. 
Available: https://www.kaggle.com/peterpetrov826/transfer-learning-
and-imagedatagenerator-in-keras

> [4] "Transfer learning with a pretrained ConvNet", 
TensorFlow. [Online]. Available: https://www.tensorflow.org/tutorials/im
ages/transfer_learning 

TRAINING THE MODELPREPARING THE DATASETINTRODUCTION

Once the model is ready for use, there 
are many ways to deploy it into 
production. We used a few methods to 
test out our model.

> GCP Deployment: We first deployed 
the model onto GCP servers and used 
the User Interface to upload and test the 
accuracy of a few images.

> Docker: We then deployed the model 
into a Docker container and made API 
calls to the model.

> Streamlit: We then used Streamlit to 
make an interactive web application 
where users can upload multiple images 
and get the predictions.

> iOS and Android apps: Finally we used 
the TensorFlow Lite (quantized) version 
of the model to deploy it onto an iOS 
and android app.

Future Steps
• Keep improving the performance of the image classification models
• Implement an image search function to find similar images based on the 

models we trained
• Use the shoes classifier model to label items and build text classifiers.
• Build the image classification completely from scratch instead of using 

transfer learning.

Figure 14: iOS App

Figure 4: CSV file with location to images with their respective labels

Figure 13: Streamlit Interface for Users
to Upload Images for Prediction

Figure 3: RegEx Python code for shoes and clothes classification

Figure 5: GCP image upload

Figure 1: The entire process of image classification

Figure 2: The technologies and resources used in our three image classification models

Figure 7: Confusion Matrix and Precision vs Recall Curve of the Clothes/Shoes Model

Figure 8: Transfer Learning Architectures of VGG16 (left) and MobileNetV2 (right)

Figure 9: Plots of the Validation Accuracy and Loss of the MobileNetV2 ModelFigure 6: Images before and after resizing to 224x224 pixels

Figure 15: Android App

Figure 12: Prediction 
Accuracy of Streamlit

Figure 11: JSON Response 
from Docker container

Data collection and labeling

Deploy the model

Data preprocessing

Train the model

Make predictions

Test and update parameters

Figure 10: The UI and prediction result on GCP

https://cloud.google.com/storage/docs/creating-buckets
https://cloud.google.com/vision/automl/docs/containers-gcs-tutorial
https://www.kaggle.com/peterpetrov826/transfer-learning-and-imagedatagenerator-in-keras
https://www.tensorflow.org/tutorials/images/transfer_learning

