
ADMINISTRATIVE AND FINANCIAL
WEB PORTAL
STUDENTS: JIELING WANG, HAOTIAN YUAN, KALANA SAHABANDU, BATINA SHIKHALIEVA, YIMENG LI

ADVISOR: PROF. PAYMAN ARABSHAHI

INDUSTRY MENTOR: TED HANSON, BRIDGET FAHERTY

SPONSOR: COLLEGE OF ENGINEERING ADMINISTRATOR GROUP

INTRODUCTION

Development of a web application with a background database that can be used
by internal UW College of Engineering (CoE) departments to manage and track
requests.
• Department administration lacks tools to manage requests for administrative

services, specifically financial transactional duties. Examples include
purchasing, reimbursements and travel requests (booking and
reimbursements).

• The functionalities of this web application includes:
• Submission of requests by users with the ability to route for appropriate

approvals, upload documents and collection of the information needed to
process by fiscal staff

• Allow communication between the staff and the requester
• Provide status updates on where the request is in the overall process and

include a dashboard to manage and track overall requests.

FUTURE DEVELOPMENT

Examples of functionalities that could be provided to support the needs of users
based on current version:
• Upload multiple PDFs at a time to attach to request and print/download those

PDFs as a single document
• Customizable forms provided to administrators for future expansion
• Smarter search or sort of pending requests

CONCLUSION

• This web portal consists of 4 main levels:
• Requester layer to submit requests
• Approver layer to approve requests under a subunit
• Fiscal staff layer to deal with requests under a unit
• Administrator layer to handle all higher levels settings

• Built a highly security backend service with Azure, and control the response
time to less than 200 ms

• Through the user-friendly interface, easier and clearer processes can be
provided for all users in all aspects

IMPLEMENTATION

TECHNOLOGY STACK

USE CASES

TOOLS

ACKNOWLEDGEMENT
• The requester fills a form and submit a type of request. The system will store

the request into the database and assign the request to a corresponding
approver.

• The approver checks details of the request and makes the decision to accept
or reject the request. The system will update the status of the request and
assigns the request into a specific fiscal staff.

• The fiscal staff checks details of the request and makes the decision to accept
or reject the request and execute the order one by one.

Express API Layer

Mongoose
Database Driver

User Interface

AJAX Engine
JavaScript

Interpreter

HTTP Requests

JSON data
JavaScript

call
HTML &
CSS data

DB QueryQueried
data

Express
Requesting

data

Requested
data

Browser Client

Server-side system

• Designed different dashboards for different access levels (submitters, approvers, fiscal staff,
admin)

• Implemented various functionalities for corresponding users such as communication channels

We would like to thank:
• Our mentors Ted Hanson and Bridge O Faherty for their support and
suggestions during the long and strenuous journey of completing the project.
• All participating members who hard-work has made this project a possibility.
• Shruti Misra and Payman Arabshahi for their endless guidance and help.

• API is written using NODE JS and Express
libraries

• API can accept following HTTP requests
• GET
• POST
• PUT
• DELETE

• NPM is used to automatically install
dependencies and run backend script on
deployment to server using Github
pipeline

• Hosted on Microsoft Azure Web App
Server

• Highly Scalable due to MVC Architecture
• Allows to store any types of form, even new

forms without any modification to the
backend program or database structure.

• Low Maintenance
• Allows hierarchy of user access to the system.
• Ability to localize budgets to a specific subunit

in the system.
• Ability to handle large amount of data (> 400

TB)
• Without any performance hit.
• Faster backend response time (Averaging

around ~150ms)

FRONT-END

Figure 2: Different Dashboards & Adaption to Different Platforms

Figure 1: Technology Stack Diagram

BACK-END

Figure 3: System Architecture

• Designed the user
interface using Bootstrap
library and React API

• Implemented the
database via MongoDB
and hosted in Azure

• Built the frontend and
backend connection with
MVC Pattern

• Developed the project
structure with Decorator
Pattern and implemented
algorithms with Strategy
Pattern in JavaScript

Figure 4: Main Programming Languages, Tools and Libraries

21

	Slide Number 1

