Problem Statement

Hospitals and high traffic areas are challenging to move about in powered wheelchairs

- This wheelchair will eliminate the need for the rider to make precise motion inputs to drive the machine
- We have made steps in developing an autonomous control system for powered wheelchairs to deliver patients with dynamic obstacle avoidance

System Data Flow

- Data shared among ROS devices through USB
- User selects a destination and orientation in a previously mapped environment
- Robot autonomously navigates to destination with live object avoidance and Graceful Motion

Figure 1: Model of Pride Mobility Edge Wheelchair with Hardware Components

Hardware and Software Layout

Simultaneous Localization & Mapping

- Provides both recorded and live mapping data for use in Graceful Motion and RRT* Path Planning Algorithms
- LiDAR Laser scanners are computationally and monetarily expensive, but provides more visual and Inertial Measurement Data than simple Depth Cameras

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

AUTONOMOUS WHEELCHAIR FOR PATIENT DELIVERY

STUDENTS: ADITYA JAIN, VICENTE ARROYOS, TYVON TABADERO

Graceful Motion

Providing the user with comfortable movement

- Use ego-polar geocentric coordinates to measure user's velocity, acceleration and jerk
- Implement customizable velocity, acceleration and jerk bounds restricted by two constants in control law
- Updating internal heading and target location orientation for smooth and intuitive steps for possible paths
- Use SLAM data to identify obstacles to generate possible steps available given constraints on control law
- Control law provides comfortable steps that are constructed together in the RRT* Path Planner

RRT* Path Planning

[1] Figure 2: Visualization of RRT* Path Planning Algorithm showing the minimum path found after building a tree of possible steps the control law provided within the bounds given for the users' comfort. Also included in grey lines is the exploratory steps being trimmed from choices.

Construction of possible paths

- Initialize starting location, the target location and the control law
- Randomly sample the control law and insert locations if they're obstacle free
- For selecting the parent location, find the nearest with the least "cost" and select the
- shortest least "costly" path

Trimming of suboptimal paths

- After a path is added, we check to if it is the optimal path or if there is a more costeffective path, removing the extra steps and reconnecting the current to the shortest path Beneficially, the paths keep the target direction, so the steps need to be contiguous in
- location and heading to be joined

FACULTY ADVISOR: HOWARD CHIZECK **INDUSTRY MENTOR: VIVEK BURHANPURKAR SPONSOR:** CYBERWORKS ROBOTICS

CYBERWORKS ROBOTICS

Figure 4: Screenshot of the wheelchair in simulation following a taught path

- Precise and safe Arduino based motor control
- cameras combined

Future Work, References, and Acknowledgments

- Improve on Point Cloud Cluster in Graceful Motion Controller
- Implement RRT* Path Planning
- Fully incorporate SLAM and Graceful Motion with current CyberWorks stack
- Secure and build a stable desig

Experimental Results

Figure 3: Visualization of SLAM data of testing

Wheelchair safely equipped with an abundance of components run off internal power

Simultaneous Localization and Mapping (SLAM) achieved with LiDAR and RealSense

• Teach and Repeat algorithm prepped for simulation, installing and improving

ering g	Faculty: Howard Chizek Graduate Students: Yana Sosnovskaya Undergraduate Students: Ross Bajocich
gn	 [1] Park, Jong Jin. "Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments." <i>University of Michigan</i>, University of Michigan, 2016, pp. 1–99.