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Keras: Open-source 
neural network library.
The deep learning engine
to train the model.

Bert: Pre-training 
language model.
The embedding layer.

VaderSentiment
Sentiment analysis
algorithm for social
media content.
The sentiment analysis
tool.

PostgreSQL:
Open-source relational
database management
system.
Storing data in psql table.

Grafana: Open source
metric analytics &
visualization suite.
Visualize the anomaly results and
twitter sentiment analysis result.

Docker: A tool for
building and running
distributed applications.
Application deployment an
environment version control.
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As telecommunication companies seek to improve network coverage and
maintain customer satisfaction, they need to constantly monitor
customer complaints and the status of  their networks.
This project, in collaboration with Tupl Inc. seeks to reduce the latency
between the time a network coverage area experiences issues and when
the network operator notices these issues. Deep learning models process
several types of  telecom data to predict which data are anomalies.
 - Call detail records (CDR) data from customer complaints
    determines if  customers have recurrent cellular issues.
  - Key performance indicators (KPI) data determines which base
    stations are down at a given time.
  - Twitter tweets identify customers’ dissatisfaction on social media
    that isn’t directly reported to the company.
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Comparing the Upload Traffic Volume, we plotted the input data in blue vs.
the prediction data from our model in orange. 
We calculated the reconstruction error between the two datasets and
determined the anomaly threshold for this feature to identify the anomalies.
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