
 NB-IoT Power Line Obstruction Detection
Students: Bogdan Tudos, Zidi Wei, Ying Kit Chui
Industry Mentors: Jeff Ahmet, Ahmad Armand
Faculty Mentor: Sumit Roy

Introduction Embedded Architecture

Conclusion

System Requirements
Software Tools

Communications

Embedded:
● Arduino / C++
● Twilio Breakout SDK
● Wio NB Arduino 

Library

Obstruction Detection

Web Development: 
● React
● NodeJS (Rest API)
○ Express
○ Serverless

● Twilio Commands API 
● AWS (Server/ Storage)
○ Lambda
○ S3

● OpenCV (Image Processing)

Every year in the Western United States, wildfires kill 
dozens of people and cause billions of dollars of 
damage. Sometimes these fires are caused by 
powerlines shorted by foreign obstructions. These 
powerlines often run through remote areas that are 
difficult to monitor manually.

This project’s goal is to utilize NB-IoT (Narrowband 
Internet of Things) technology to cheaply monitor these 
lines and prevent fires. It offers a low cost device that 
detects obstructions within range of a power line and 
remotely communicates that information to end users.

1. Communications must be done via T-Mobile’s NB-IoT 
network.

2. Data consumption must not exceed 2 MB per month.
3. Overall transmission rate must not exceed 10 packets per 

hour.
4. Identify obstructions within a 1-foot radius of a power line.

The device accomplishes its purpose of providing electric 
companies a cheap way to monitor power lines for any 
obstructions that could cause electrical wildfires. It does so by 
providing the following features:

● a user-friendly front end interface
● redundant web-based data storage
● custom embedded camera drivers
● low cost, low-bandwidth communication via NB-IoT 

network

The messages from the MCU to the front-end is a 
multi-stage process that:

1. Encodes 640x480 JPG images, GPS location data, and 
device ID into Base64 format and sends them to Twilio’s 
servers as multiple 140 byte “commands.”

2. Pulls the commands from Twilio’s Command API endpoints 
using AWS Lambda.

3. Decodes the Base64 commands back into JPG images and 
stores them on AWS S3 to be accessed later.

The OpenCV Python library was used to process images and 
identify obstructions. OpenCV’s edge detection algorithm 
converts the RGB picture into a binary image, with edges in 
white and all other pixels in black.

From here, we can sum up each picture’s edge pixels and return 
the percent difference of the two pictures. If the percentage 
exceeds a certain value then we set the obstruction variable to 
true.


