Introduction

Many government agencies and researchers are interested in tracking and collecting data on Dungeness crab populations in the Pacific North West (PNW). Specifically, many researchers are interested in the effects of global warming and ocean acidification on Dungeness crab populations. Researchers have used traps to collect Dungeness crab megalopae, but current tools for collecting and counting crab are laborious and lack any additional sensors.

In this project, we present progress towards automated counting of Dungeness crab megalopae and a more versatile data collection and control system.

Requirements

- Integrate technology into existing crab trap design
- Control the illumination of a 12v LED light to attract crab at specific times/intervals
- Collect focused 720p 30 frames per second (fps) video of <0.5-1cm objects
- Classify and track Dungeness crab in video for counting
- Collect environmental data on water temperature, internal/external luminance, and trap accelerometer
- Implement power monitoring system to track power usage
- Minimize power consumption, cost, and size

Specifications/Results

1. Arduino based sensor control and logging system on custom PCB with OLED GUI written in C
2. Raspberry Pi 3 + Pi Camera + M12 Lenses
3. Custom 3D printed lens mount and linear rail camera mounting system
4. 3000+ hand labeled images of Dungeness crab
5. Darknet YOLOv3 based detection algorithm rebuilt with Tensorflow + Keras for cross-platform use
6. Python + PyQt based GUI for data visualization

Implementation

Sensor Control System
- Custom easily printable PCB
- Sensors + Logging
- 12v LED Timing

Camera System
- 12MP Raspberry Pi v2 Camera
- M12 Lens Mount
- 720p 30fps video

Custom Software
- 3000+ Labeled Megalopae
- Detection/Visualization GUI
- C based embedded OLED GUI

Conclusion

Our project expands on past work to improve the process of collecting and counting megalopae: our sensor control system will help gather additional data points about the crabs’ environments, our camera system will allow groups to clearly record megalopae, and our labeled data and detection model will make it easy for other groups to expand on our work.

Future Work

- Label more data to increase accuracy of the detection model
- Label data for tracking and implement tracking algorithm
- Mount camera system into existing trap
- Build custom battery for longer deployments
- Implement system to calibrate light sensors

Acknowledgments

We would like to thank Paul for the help and guidance on the project, purchasing equipment, and begin such an involved sponsor to our project. We would also like to thank Kate for helping label data for machine learning.