Problem Statement

- **Motivation:**
 - To perform geospatial assessment to determine the consistency of business names and locations.

- **Problem:**
 - How to extract signage location and text from an aerial imagery.

- **Approach:**
 - Two-model System:
 - An object detection model to detect signs from oblique aerial imagery.
 - A sign reading model to extract text from the detected signs.

Motivation

How to extract signage location and text from an aerial imagery.

Two-model System:

To perform geospatial assessment to determine the consistency of business names and locations.

Approach:

- Two-model System:
 - An object detection model to detect signs from oblique aerial imagery.
 - A sign reading model to extract text from the detected signs.

Motivation

How to extract signage location and text from an aerial imagery.

Two-model System:

To perform geospatial assessment to determine the consistency of business names and locations.

Approach:

- Two-model System:
 - An object detection model to detect signs from oblique aerial imagery.
 - A sign reading model to extract text from the detected signs.

Pipeline of Two-Model System

![Pipeline of Two-Model System](image)

Step 1: Object Detection

- **Approach A: CNN + BiLSTM**
 - The network consists of a Convolutional Neural Network and bidirectional Long Short-Term Memory model.
 - The input is an image containing a line of text and the output is a matrix containing the probability of each appearing character.

- **Approach B: Efficient and Accurate Scene Text Detector (EAST) + pytesseract**
 - Pre-process the text image to meet the Pytesseract standard requirements.
 - Text-deskewing, binarization, erosion, and dilation.
 - Detect the text area within the sign with the EAST model.
 - Input the text region into Pytesseract for text recognition.

Step 2: Text Recognition Model

- **Approach A: CNN + BiLSTM**
 - The network consists of a Convolutional Neural Network and bidirectional Long Short-Term Memory model.
 - The input is an image containing a line of text and the output is a matrix containing the probability of each appearing character.

- **Approach B: Efficient and Accurate Scene Text Detector (EAST) + pytesseract**
 - Pre-process the text image to meet the Pytesseract standard requirements.
 - Text-deskewing, binarization, erosion, and dilation.
 - Detect the text area within the sign with the EAST model.
 - Input the text region into Pytesseract for text recognition.

Step 3: Evaluation Metrics

- **Object Detection:**
 - Intersection over Union (IoU) is an evaluation metric for measuring the difference between two sequences and is a threshold.
 - IoU threshold:
 - Superior: 0.8
 - Good: 0.7
 - Threshold: 0.6
 - Epoch:
 - 110
 - Percentage Above Threshold:
 - 0.95
 - 0.78

- **Text Recognition:**
 - Levenshtein distance (Edit distance) is a string metric for measuring the difference between two sequences, it computes the minimum number of single-character edits (i.e., insertions, deletions, or substitutions) required to change one word into the other.
 - Levenshtein distance:
 - Superior: 0
 - Good: 1
 - Threshold: 2

Results

- **Object Detection:**
 - Approach A: CNN + BiLSTM
 - Approach B: Efficient and Accurate Scene Text Detector (EAST) + pytesseract

- **Text Recognition:**
 - Approach A: CNN + BiLSTM
 - Approach B: Efficient and Accurate Scene Text Detector (EAST) + pytesseract

Tools

- mxnet
- gluon
- jupyter
- AWS

Dataset

- Sign Detection:
 - We started with approximately 110 cropped unique signs.
 - Through augmentation (flipping, rotation, and brightness) we obtained a training set of 6,500 images and a test dataset of 800 images.

- Text Recognition:
 - We used the ICDAR 2013 datasets to retrain a text recognition model.

References