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Introduction

Problem Statement Background and Motivation Customer Specification Statistical Approach
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Analysis-Based Design Process

Weights and Determining Criteria
Zero (0) weight indicates not considered or no influence on engine nacelle selection while the aircraft are rated on a scale of
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Figure 3: Trade study of Current Commercial Engines and Future Engines Engine
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, Two-dimensional CFD simulation was performed since - The main facility used for this project was AA No budget was required for this study.
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