Structural Health Monitoring – Mechanical and impact damage detection via fluorescent coatings

OBJECTIVE:

Improve inspection capability by developing a fluorescent coating to visually detect impact events and mechanical damage.

PARTNERS:

Flinn & Jen Research Groups, UW MSE The Boeing Company

Contact:

Dr. Brian Flinn bflinn@uw.edu | 206.280.8483

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

RESULTS:

Aerospace-compatible fluorescent coatings activated by mechanical force

OFF

ON

Coatings are activated by compression, indentation, impact events

Consistent with barely visible impact damage (BVID) force levels

Increasing impact energy \rightarrow

Experimental and Numerical Study on Low-Velocity Impact on Composite Laminate Structures

OBJECTIVE:

Develop numerical models to predict low velocity impact of composite laminate structures

- Impact response & damage
- Compressive strength after impact

PARTNERS:

Boeing Company, Research and Technology, Seattle & St. Louis

Contact:

Solver I Thorsson (PhD Candidate) solitor@uw.edu | 734.604.3843

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

RESULTS:

Low-velocity impact experiments were done with face-on and edge-on impact. Finite elements models using Enhanced Schapery Theory (EST) and Discrete Cohesive Zone Method (DCZM) elements for in-plane and out-of-plane damage and failure, respectfully. Results agree well with experiments.

Structural Health Monitoring – Thermal monitoring & damage detection via fluorescent coatings

OBJECTIVE:

Improve inspection capability by developing a fluorescent coating to quantify thermal exposures and identify damaged areas.

PARTNERS:

Flinn & Jen Research Groups, UW MSE The Boeing Company

Contact:

Dr. Brian Flinn bflinn@uw.edu | 206.280.8483

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Braid Your Airplane: Rapid Manufacturing and Insertion of Composites in Flying Vehicles

OBJECTIVE:

Develop braided large scale unitized primary structures for air & space vehicles

PARTNERS:

National Aeronautics and Space Administration University of Michigan

Contact:

Dr. Anthony Waas or Cyrus Kosztowny awaas@uw.edu | 206.221.2569

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

RESULTS:

 Manufactured from constituent materials in one piece

- Minimal post-manufacturing processing
- Out of autoclave capable
- Unitized stiffened panel unable to delaminate under compressive loads
- Best void volume fractions in the industry at V_{vf} < 1%

Design and fabrication of self-sensing composites with embedded nanofibers

OBJECTIVE:

Use direct-printing technique to develop self-sensing composites with embedded multifunctional nanofiber network

Hot gas injecto

Vision system

Motion cont

PC and softwar

Vision system

Software with UI

Samsung Research America

Contact:

Dr. Jinkyu "JK" Yang jkyang@aa.washington.edu | 206.543.6612

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Acoustic emission beamforming for detecting and characterizing damage in composite materials

OBJECTIVE:

Develop a non-invasive, noncontact method for real-time monitoring of composite materials for detecting and localizing damage

Contact:

Dr. Jinkyu "JK" Yang jkyang@aa.washington.edu | 206.543.6612

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

- Capable of detecting early failure of composites in real time

Identification of weak bond damage in composites using acoustic solitons

OBJECTIVE:

To detect the presence of weak bond in composites in two steps:

- Introduce delamination in weakly bonded composites using solitons
- Study the reflected solitons' characteristics for identifying debond

Contact:

Dr. Jinkyu "JK" Yang jkyang@aa.washington.edu | 206.543.6612

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

RESULTS:

The soliton-based diagnostic technique shows promising results in terms detecting weak bonds.

Application of shallow-angle, thin-ply laminates to composite wings

OBJECTIVE:

Investigate the effect of shallowangle, thin-ply laminates on the structural performance of wings

PARTNERS:

Stanford University STANFORD UNIVERSITY Chomarat JCATI

Contact:

Dr. Jinkyu "JK" Yang jkyang@aa.washington.edu | 206.543.6612

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

64% improvement in bending stiffness-to-weight when using shallow-angle, thin-ply laminates compared to regular laminates.

Designing material properties via microstructure

OBJECTIVE:

Understand relationship between material microstructure and highly nonlinear material properties

Applications: shock mitigation, lowdensity materials, acoustics/structural vibration

PARTNERS:

Related wave propagation in designed materials projects (ARO/NSF):

Contact:

Dr. Nicholas Boechler boechler@uw.edu | 206.221.6515

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

Web: http://faculty.washington.edu/boechler/

Time

Crashworthiness Analysis of Textile Composites

OBJECTIVE:

 to formulate *multiscale models* for effective crashworthiness *design of textile composite structures*;
to develop *new experiments* for material characterization and *scaling from lab to structure*

PARTNERS:

Dept. of Energy, GM, Ford, Chrysler

Contact:

Dr. Marco Salviato salviato@uw.edu | 206.543.2170

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

RESULTS:

1) Effective *multiscale model* based on *microplane decomposition* (b) with excellent agreement with experimental data (d);

2) *mesostructural optimization* enabled by the proposed multiscale framework

Durability of Textile Composite Structures: Experimental and Computational Analysis

OBJECTIVE:

1) To provide *experimental and computational tools* to asses the durability of large textile (2D and 3D) composite structures; 2) To provide tools for mesostructural optimization for *durability*;

PARTNERS:

NSF (pending), Albany Composites

Contact:

Dr. Marco Salviato salviato@uw.edu | 206.543.2170

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

RESULTS (ongoing):

 A general computational framework is under development to account for (a) *fatigue*, (b) *matrix degradation*, (c) *randomness* of material properties;
A new set of experimental protocols is under study to characterize *material degradation from lab to large structures*

Nanocomposites for Large Lightweight Structures: Experiments and Modeling

OBJECTIVE:

1) To develop *new nanocomposites* with *enhanced quasi-static and fatigue behavior*;

2) To formulate models for material and structural optimization

PARTNERS:

Royalty Research Funds (pending)

Contact:

Dr. Marco Salviato salviato@uw.edu | 206.543.2170

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

RESULTS (ongoing):

 1) Strength and fatigue threshold enhanced by more than 50% compared to epoxy specimens;
2) Ongoing work focuses on translating these results to 3D textile composites;

3) a *multiscale modeling* framework is

CCAM-Lin under development to describe *fatigue damage*

Predicted fatigue damage at RVE level for a SiO₂/epoxy system

Reliability-Based Damage Tolerant Structural Design

Contact: Prof. Kuen Lin lin@aa.Washington.edu

Objective: Develop probabilistic methods for evaluating structural component reliabilities suitable for aircraft design, inspection,

and regulatory compliance

Sponsors:

Delamination Arrest Features in Bonded Structures

Contact: Prof. Kuen Lin lin@aa.Washington.edu

Objective: To analytically predict crack arrest capability in bonded-bolted composite structures and to verify analysis by experiments

Sponsors:

Crack propagation

Crack Tip Location

COLLEGE OF ENGINEERING

Skin

UNIVERSITY of WASHIN

Enhanced Schapery Theory for Progressive Failure Analysis and High Fidelity Testing for Validation

OBJECTIVE:

Develop and validate high fidelity, computationally efficient models for the progressive failure analysis of polymer matrix composites and make virtual testing possible.

PARTNERS:

Boeing Research & Technology

Contact:

Prof. Anthony M. Waas awaas@uw.edu | 206-221-2569

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

RESULTS:

- Mesh objective predictions
- Unified approach for modeling in-plane and flexural problems
- Excellent agreement with experiments

 Digitial Image Correlation and Acoustic Emission measurements

Development of New Material Systems for Binder Jetting AM (Powder Bed Printing)

OBJECTIVE:

To developed new powdered material systems for Binder Jet AM such as ceramics, glasses, bioprintable, cements, etc.

PARTNERS:

University of Washington (Solheim Additive Manufacturing Lab), Open3DP, Seattle Pottery, Olympic Color Rod

Contact:

Dr. M. Ganter / D. Storti ganter@uw.edu / stori@uw.edu

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

RESULTS:

To date: we have successfully tested and released more than 20 different materials systems for Powder Bed Printing.

Development of Vat Photo-Polymerization Systems – devices & materials (DLP systems)

OBJECTIVE:

To aid in the development and adoption of vat photopolymerization systems and materials.

PARTNERS:

University of Washington, LittleRP, LLC

Contact:

Dr. D. Storti / M. Ganter stori@uw.edu / ganter@uw.edu

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

RESULTS:

Autumn 2015 ME480 class fabricated, tested and printed with 10 new systems.

Tested several new photopolymers for photoelastic engineering uses.

Development of Mechanochromic Materials for Multi-Material AM.

OBJECTIVE:

To deploy recently developed mechanochromic materials into the 3D Printing world via Filament

Printing.

RESULTS:

New materials were successfully deployed in a multi-material AM system to create force sensors.

PARTNERS: UW Chemistry Department, Research Corporation for Science Advancement (RCSA)

Contact:

Dr. A.J. Boydston / D. Storti / M. Ganter ajb1515@uw.edu / storti@uw.edu

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Development of Multi-Material & Graded Property Materials via Vat Photo-Polymerization AM.

OBJECTIVE:

To modify existing Photopolymerization system, models and materials to allow for the creation of multi-material and graded property materials.

PARTNERS:

UW Chemistry Department, Research Corporation for Science Advancement (RCSA).

Contact:

Dr. A.J. Boydston / M. Ganter / D. Storti ajb1515@uw.edu / ganter@uw.edu

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

RESULTS:

Successfully demonstrated graded property objects using vat photopolymerization AM via DLP.

Virtual manufacturing of advanced textile composite aerostructures

OBJECTIVE:

- To numerically study the effect of processing on strength/shape of cured composite aerostructures
- To identify key processing parameters that dictate performance

PARTNERS:

GE Global Research, GE Aviation, Air Force Research Lab

Contact:

Dr. Anthony M. Waas awaas@aa.washington.edu | 206.221.2569

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

Collaborative Center for Advanced Manufacturing | January 14, 2016 | Aerospace Executives Forum

RESULTS:

- Processing induces residual stresses in the cured structure
- If stresses during curing exceed a certain limit, microcracks can form in the matrix → which can lead to reduction in stiffness and strength
- Simulations are performed with Epon 862 data on curing (i) at microscale for unidirectional laminates (ii) for textile composites such as satin weave

Certification of Discontinuous Fiber Composites in Aircraft Structures: Stiffness and Strength Predictions

OBJECTIVE:

Develop statistical methods to predict stiffness & strength of chopped fiber composites such as HexMC[™], leading to certification based on analysis w/modest experimental database

PARTNERS:

Ctr for Adv Materials in Transport Aircraft Structures (AMTAS), The Boeing Company, and Hexcel

Contact: Dr. Mark Tuttle tuttle@uw.edu | 206-543-5710

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

RESULTS:

Predicted

Measured

Contour Plots of Major Principal Strain in a HexMC Intercostal

Effects of Moisture Diffusion in Sandwich Composites

OBJECTIVE:

Evaluate the impact of moisture and thermal cycling (room temps to -55°F) over long times on stiffness and fracture toughness of honeycomb core sandwich composite structures

PARTNERS:

Ctr for Adv Matl's in Trans Aircraft Str (AMTAS), Boeing , Bell Helicopters, 3M Company

Contact:

Dr. Mark Tuttle tuttle@uw.edu | 206-543-5710

UNIVERSITY of WASHINGTON

COLLEGE OF ENGINEERING

RESULTS:

Single Cantilever Beam (SCB) sandwich specimen used to measure Mode I Fracture Toughness