Making Carbon Fiber Composites Circular: CRTC Approach to Composites Recycling

Presented by: Jennifer States
Contributors: Bob Larsen, Geoff Wood, Ryan McIntosh
Composites Recycling Technology Center

January 22, 2016
Background

• In North America: estimated 29 M lbs. (~13,200 MT) of carbon fiber landfilled per year
• In Washington: estimated 2 M lbs. (~900 MT) of carbon fiber landfilled per year
• Majority (in WA) is pre-preg, primarily aerospace production scrap
 – Secondary amount is cured production trim
 – Some pre-preg scrap has to be oven cured prior to landfill
 – Regulations vary based on constituents in resin system
 – Adds cost/time burden on composite manufacturers
Carbon Fiber Recycling Landscape

- Few players globally
- Capacities limited
- Reclamation process include pyrolysis & solvolysis

Renamed: Carbon Conversions

CRTC’s Vision, Mission, Principles

Vision:
- Pioneering product development to realize the full potential of composite recycling

Mission:
- To lead and grow a composite recycling industry that fully diverts Washington State’s carbon fiber scrap into value-added products

The following Guiding Principles shape CRTC’s decisions:
- **Economic**: Enable the expansion of the advanced manufacturing industry through research and development for conversion of carbon fiber scrap into value-added products.
- **Environment**: Reduce the amount of composite scrap being landfilled through re-use in new applications with reduced energy and environmental footprints
- **Education**: Support the training of a workforce prepared for and accomplished in the skills required by the composite recycling industry
Location – Space to Start-up and Room to Grow
Status/Scale of Effort

• Interim R&D facility: moved in presses and tooling/prototyping equipment to start development in January 2106

• New 25,000 s.f. facility under construction
 – Built-in ovens, freezers, finishing booths, etc.
 – 75,000 pound pre-preg freezer capacity
 – High temperature ovens (800°F capable)
 – High-speed compression molding presses
 – Complete steel 4-axis CNC tooling capability in-house
 – Design/analysis capabilities, collaborative testing with WSU
 – Pursuing UW collaboration for expanding capabilities; offering research & training opportunities at CRTC

• Co-location with Peninsula College’s Advanced Manufacturing - Composites Technology Program

• Separate production space and multiple laboratory spaces
CRTC Approach

- Create demand for reclaimed materials via market pull from high-value products
- Select products to match availability of scrap, achievable properties, and quantity of materials
- Develop process science for converting autoclave cure cycles to press-based rapid cure cycles
- Explore additive manufacturing
 - Chopping to the format planned and building net preforms for compression molding as a form of "bulk" additive manufacturing
- Develop design property data to reflect “combined” materials properties and new cure cycles
- Work with companies to advance market-based applications and support these with product demonstration, materials, and process technologies
Value Proposition for Recycled Carbon Fiber (rCF)

• CRTC will develop manufacturing and product sales and create confidence in using recycled pre-preg
• CRTC’s early rCF manufacturing and development efforts will generate property databases and process knowledge that feeds new applications
• CRTC success will attract increased R&D for new materials and processing technologies, such as Materials Genome Initiative
• Composite recycling needs “market pull” to improve reclamation business case
• CRTC will initiate with uncured carbon pre-preg Phase II will incorporate “recovered” dry fiber from Recyclers
Transforming “Waste” Streams into Value Streams

• Examining the Manufacturing Opportunity with Pre-preg Scrap
 – Selected applications in Paddlesports, Snow-sports, Fishing, and Cycling
 • Only considered applications that can use the recovered form of materials
 – Range of as-manufactured costing examined on a unit weight basis
 – Looked at cost within manufacturing operations
 • Backed out all mark-ups and distribution costs plus SG&A and profit
• Range is $75/pound to $192/pound. Average across the selected applications was $139/pound
 – This figure represents labor, materials, consumables, amortization & production management expenses
• 2M lbs. total carbon fiber scrap currently in WA:
 – Estimate 60% useful materials from landfilled scrap or ~1.2 M lbs/year
 – $166.8 M in direct manufacturing opportunity (converted to consumer goods)
 – Or approximately 1,100 direct jobs; plus 1,400 indirect jobs = Total 2,500 jobs
 – Equal to $670 M retail sales volume
Recycled Carbon Fiber Case Study
(Actual Project)

Large Radio Telescope Mount Support Components

- Is virgin, continuous fiber required?
 - What are the design drivers?
- What process should be used?
 - What are the molding requirements?
 - What are the masses/sizes?
 - Can process/tooling accommodate cure induced dimension changes?

Decision:

- Dish rim connectors utilize hybrid of recycled discontinuous carbon fiber (spool ends), and virgin BimaX™ surface braid (for hole drilling stability)
 - Fabric construction would have been 168 plies and ~84 ply drops – on 4 faces
- Metered infusion epoxy (low-exotherm), compression molded at ~300 psi, 160°F
Carbon Fiber: Applications and Innovation

Automotive
Recreational
Clean Energy
Non-structural
Aerospace
Seeking Partners to Realize CRTC Vision

• **Industry Partnerships**: Product design, development and sales
 – Direct sales transitioning into private label products for established market players
 – Enter supply chain:
 • Partnerships enable continued growth in CF industries into mainstream, high-volume manufacturing applications
 – Bridging the gap between lab scale and large production

• **R&D/D Partnerships**
 – Innovation tech center for cutting edge research
 – Interested in teaming with partners that have complementary needs and goals
 • Explore potential of low cost rCF feedstocks for new materials
 • Process improvements for scale up
 – Engineer in Residence Program

• **Educational Partnerships**
 – Peninsula College space for classes, offices and laboratories
 • Recycling certification program first in state
 – Collaboration with WSU and other universities
 – Hands on research and production training for Graduate Students
Conclusions

• Carbon fiber is a small business segment relative to other structural materials, and recycling is one barrier to achieving commodity scale.
• Addressing recycling as part of high-volume production development will lower overall costs, and increase demand for CF materials.
• CRTC is leading the way in closing the circle for composite recycling.
• High performance characteristics of CF can be applied in new applications through use of low cost rCF.
• CRTC focus on product development optimizes value of rCF material stream.
• CRTC wants to partner and collaborate to grow the recycled carbon fiber industry.
• rCF is part of the paradigm shift called for in the Materials Genome Initiative.
Join Us:

Jennifer States
Director of Business Development
Composite Recycling Technology Center
Cell: 509-554-1037
jstates@compositerecycling.org
www.compositerecycling.org