Studying the Engineering Student Experience: Design of a Longitudinal Study

Sheri Sheppard, Cynthia Atman, Reed Stevens, Lorraine Fleming, Ruth Streveler, Robin Adams, Theresa Barker

Stanford University/University of Washington/ University of Washington/ Howard University/Colorado School of Mines/University of Washington/ University of Washington

NSF Grant # ESI-0227558
Introduction

• NEED
 ➢ Study how students become engineers and learn critical engineering skills
 ➢ Investigate the student’s perspective

• Academic Pathways Study (APS)
 ➢ Research conducted by the Center for Advancement in Education (CAEE)
Objectives of this work

Provide a comprehensive account of how students become engineers:

- How student engineering knowledge changes over time
- How education varies across populations and institutions (e.g., gender, ethnicity, geographic location)
- Misalignments between student learning and workplace needs
Research questions

• SKILLS:
 ➢ How do students’ engineering skills and knowledge develop and/or change over time?
 ➢ How do engineering students’ technology skills compare with those of professionals?

➢ Difficult concepts
 • What concepts are difficult for students to learn?
 • Why are these concepts difficult?
 • How can we measure students’ understanding of these concepts?
Research questions (cont.)

• **IDENTITY**
 ➢ How do students come to **identify** themselves as engineers?

 ➢ How does student **appreciation, confidence, and commitment** to engineering change as they navigate their education?
Research questions (cont.)

- **EDUCATION:**
 - What elements of students’ engineering educations contribute to changes observed in skill and identity development?
 - What do students find difficult and how do they deal with the difficulties they face?
Research questions (cont.)

- **WORKPLACE:**
 - What *skills* do early career engineers need as they *enter* the workplace?

 - Where did they *obtain* these skills?

 - Are there any *missing* skills?
APS Methodology

• Focus on engineering students
• Four cohorts
 ➢ Cohort 1 - Longitudinal (freshmen - junior)
 ➢ Cohort 2 – Longitudinal (senior – workplace)
 ➢ Cohort 3 – surveys at 4 campuses
 ➢ Cohort 4 – surveys at other campuses
• Cross-institutional (4 campuses)
• Multiple research methods
Cross-institutional

• Four campuses:
 ➢ U. of Washington *(large public Research I)*
 ➢ Stanford University *(large private Research I)*
 ➢ Howard University *(HBCU Research I)*
 ➢ Colorado School of Mines *(engineering-only)*
Multiple research methods

- Surveys
- Formal interviews
- Ethnographic interviews
- Ethnographic observations
- Scoping task
Participants

- Recruited in their first year
- 160 subjects (40/campus)
 - 32 ethnographic subjects (8/campus)
- Control Group
 - 160 subjects
- Diversity
 - Over sampling of underrepresented groups
Challenges

• Multi-campus Effort

• Multidisciplinary Team

• Multiple Methodology
 ➢ Ethnographic vs formal interviews
Where we are now

• First year of data collected (freshmen)
• Data analysis begins this summer
 – 2 day meeting researcher’s meeting in August to jointly look at data
• Analysis will be both quantitative and qualitative
• First year results will inform questions and methods for year 2
 – Same 160 students will participate in year 2 of the study
Acknowledgements

• Center for the Advancement of Engineering Education [NSF ESI-0227558]

• Contributing Team Members: Tori Bailey, Helen Chen, Angela Cole, Kimarie Engerman, Ozgur Eris, Lari Garrison, Ashley Griffin, Marvin Kendall, Heidi Loshbaugh, Kevin O'Connor, Tom Satwicz and Carmen Smith

• Project website
http://www.engr.washington.edu/caee/