Considering life cycle during design: A longitudinal study of engineering undergraduates

Ken Yasuhara, Andrew Morozov, Deborah Kilgore, Cynthia Atman, Christine Loucks-Jaret
Center for the Advancement of Engineering Education
University of Washington
Seattle, WA
ASEE 2009

ABET outcomes on sustainability and context

- "(c) an ability to design...within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability"
- "(h) ...understand the impact of engineering solutions in a global, economic, environmental, and societal context"

Are students achieving these outcomes?

Considering context in engineering design

- Extending past research on how engineering students and professionals approach open-ended design problems
- Now also considering dimension of time

Life cycle as an analysis framework

- Structured way of placing engineering design in broad temporal context
- Commonly used for comprehensive evaluation of project cost, environmental impact

Research questions

- How broadly do engineering undergraduates consider life cycle when evaluating design alternatives?
- Change during undergraduate years?
- Vary with gender?
Data collection: Street crossing design task

- Free-response questions about the design of a cost-effective way of safely getting pedestrians across a busy intersection
- 64 engineering majors at 4 institutions
- 2nd and 4th years of undergraduate study
- Part of CAEE’s Academic Pathways Study

Data analysis: Coding for life cycle stages

- Focus on generating and evaluating design alternatives
- Coding for consideration of life cycle stages
 - Independent coding by two researchers
 - Minimum of 80% agreement
 - Negotiation to consensus

Life cycle consideration: Class standing

- Year 2: DESIGNS/CONSTRUCTION = 40%, MAINTENANCE/DISPOSAL = 60%
- Year 4: DESIGNS/CONSTRUCTION = 50%, MAINTENANCE/DISPOSAL = 50%

Life cycle consideration: Gender

- Year 2: Women = 40%, Men = 60%
- Year 4: Women = 50%, Men = 50%

Toward implications

- What kinds of experiences/background are associated with broader consideration of context during engineering design?
- How can we encourage engineering students to consider life cycle?

A multi-method glimpse

- “Kara,” who had a capstone course in sustainable development
- From interview: “not just how much it costs to produce but how much it costs to get rid of it”
- From design task:
 - DESIGN/CONSTRUCTION: study to better understand problem
 - MAINTENANCE/DISPOSAL: trial period with crosswalk signals, with option of adding overpass later

See also: Kilgore et al., 2009 at Mudd Design Workshop
Acknowledgements

- Undergraduate Research Assistants: Joseph Douglas, Angela Du, Johanna Hayenga, Laura Julich, and Charlene Reyes
- Co-authors: Andrew Morozov, Deborah Kilgore, Cynthia Atman, Christine Loucks-Jaret

http://www.engr.washington.edu/caee/

This material is based on work supported by the National Science Foundation under Grant No. ESI-0227558, which funds the Center for the Advancement of Engineering Education (CAEE). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

CAEE is a collaboration of five partner universities: Colorado School of Mines, Howard University, Stanford University, University of Minnesota, and University of Washington.